
 

1 
 

DJK3C: DIGITAL ELECTRONICS 

 

Unit I 

Number System: 

Decimal – binary – octal – hexadecimal number system – conversion from one system to another – 

binary arithmetic – 1’s complement – 2’s complement – BCD, excess 3, gray , alpha numeric codes. 

Unit II 

Boolean algebra: 

Boolean operation – rules and laws of Boolean algebra – De Morgan’s theorems – implication of 

expressions using Boolean algebra – Karnaugh map. 

Unit III 

Basic Logic gates: 

AND, OR, NOT (symbol, truth table, circuit diagram, working) NAND, NOR, EX-OR, EX- NOR (symbol, 

truth table) 

Unit IV 

Combinational Circuits: 

Half adder – full adder – half sub tractor – full sub tractor – binary adder – BCD adder – decoder – 

encoder – multiplexer – de multiplexer. 

Unit V 

Flip flops: 

RS, JK, D, T flip flops – master slave flip flop - IC 555 timer – astable multi vibrator  - mono stable 

multi vibrator. 

 

Books for study and reference : 

1. Digital principles & applications – Albert Paul Malvino & Leach 

2. Digital Logic & Computer Design – Morris Mano. 

  



 

2 
 

𝑈𝑛𝑖𝑡 𝐼𝑁𝑢𝑚𝑏𝑒𝑟 𝑆𝑦𝑠𝑡𝑒𝑚 

Decimal - Binary- Octal - Hexadecimal number system – conversion from one system to 

another – Binary arithmetic – 1’s complement – 2’s complement – BCD, Excess, Gray, Alpha 

numeric codes 

1.1 Number System: 

A number is a mathematical object used to count, measure, and label. Numbers are 

represented by a string of digital symbols.  A number system of base 𝑟 is a system that uses 

distinct symbols for 𝑟 digits. That is in a positional base𝑟 numeral system 𝑟 basic symbols (or 

digits) corresponding to the first 𝑟 natural numbers including zero are used. To generate the 

rest of the numerals, the position of the symbol in the figure is used. The symbol in the last 

position has its own value, and as it moves to the left its value is multiplied by 𝑟. There are 

four systems of arithmetic used in digital system. These systems are Decimal, Binary, 

Hexadecimal and Octal. 

 

 

 

 

 

. 

1.2 Decimal Number System: 

The Decimal number system has a base ten. This system uses ten distinct digits 0 1 2 3 4 5 6 7 

8 9 to form any number. Each digit can be used individually or they can be grouped to form a 

numeric value.Each of decimal digits, 0 through 9, has a place value or weight depending on 

its position. The weights are units, tens, hundreds, thousands and so on. The same can be 

expressed as the powers of its base as 100 , 101 , 102 , 103 ⋯𝑒𝑡𝑐for the integer partand 

10−1, 10−2, 10−3, 10−4 ⋯𝑒𝑡𝑐 for the fractional part. 100 , 101 , 102 , 103 ⋯𝑒𝑡𝑐represents the 

units, tens, hundreds, thousands etc. and the quantities 10−1, 10−2, 10−3,⋯𝑒𝑡𝑐 represents 

one tenth, one hundredth, one thousandth etc. The integer part and fractional parts are 

separated by a decimal point. The position weights in decimal system is given as 

 

 

System  Base  Digits 

Binary 2 0 1 

Octal 8 0 1 2 3 4 5 6 7 

Decimal 10 0 1 2 3 4 5 6 7 8 9  

Hexadecimal 16 0 1 2 3 4 5 6 7 8 9 A B C D E F 

⋯ 103 102 101 100 ∙ 10−1 10−2 10−3 10−4 ⋯ 



 

3 
 

Example: 

  (i)  7693  =   7 × 103 + 6 × 102 + 9 × 101 + 3 × 100  

=   7 × 1000 + 6 × 100 + 9 × 10 + 3 × 1 

=   7000 + 600 + 90 + 3 

  (ii)     1936.46  =  1 × 103 + 9 × 102 + 3 × 101 + 6 × 100 + 4 × 10−1 + 6 × 10−2 

=  1000 + 900 + 30 + 6 + 0.4 + 0.06 

 

1.3 Binary Number System: 

The base of the binary number system is two. It uses the digits0 and 1 only. The two digits 0 

and 1 are called a bit. The place value of each position can be expressed in terms of powers 

of 2 like 20, 21, 22, 𝑒𝑡𝑐 for integer part and 2−1, 2−2, 2−3, 𝑒𝑡𝑐 for the fractional part. A binary 

point separates the integer and fractional part. The position weights in the binary is given as 

 

 

 

 

4 𝑏𝑖𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑤𝑜𝑟𝑑 ⟹     𝑛𝑖𝑏𝑏𝑙𝑒 

8 𝑏𝑖𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑤𝑜𝑟𝑑 ⟹     𝑏𝑦𝑡𝑒 

16 𝑏𝑖𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑤𝑜𝑟𝑑  ⟹     𝑤𝑜𝑟𝑑 

32 𝑏𝑖𝑡 𝑏𝑖𝑛𝑎𝑟𝑦 𝑤𝑜𝑟𝑑  ⟹     𝑑𝑜𝑢𝑏𝑙𝑒 𝑤𝑜𝑟𝑑 

 

1.4 Octal Number System: 

The base of the octal number system is eight. It uses eight digits 0 1 2 3 4 5 6 𝑎𝑛𝑑 7 to form 

a number. The place value of each position can be expressed in terms of powers of 8 like 

80, 81, 82, 𝑒𝑡𝑐 for integer part and 8−1, 8−2, 8−3, 𝑒𝑡𝑐 for the fractional part. An octal point 

separates the integer and fractional part. Sets of 3-bit binary numbers can be represented 

by octal numbers (000, 001, 010,011, 100, 101,110,111) and this can be conveniently be 

used for entering data in the computer. The position weights in the octal system is given as 

 

 

 

 

⋯ 23 22 21 20 ∙ 2−1 2−2 2−3 2−4 ⋯ 

⋯ 83 82 81 80 ∙ 8−1 8−2 8−3 8−4 ⋯ 



 

4 
 

1.5 Hexadecimal Number System: 

The Hexadecimal number system has a base of 16. It has 16 distinct digit symbols. It uses 

the digits 0 1 2 3 4 5 6 7 8 9  plus the letters 𝐴 𝐵 𝐶 𝐷 𝐸 𝑎𝑛𝑑 𝐹. Any hexadecimal digit can 

be represented by a group of four bit binary sequence.That is the Hexadecimal numbersare 

represented by sets of 4-bit binary sequence (0000, 0001,0010, 0011, 0100,0101,0110, 

0111,1000,1001,1010,1011,1100,1101,1110,1111). The position weight in the hexadecimal 

number system is given as 

 

 

 

Number System 

Decimal 

(Base 10) 

Binary 

(Base 2) 

Octal 

(Base 8) 

Hexadecimal 

(Base 16) 

0 0000 00 0 

1 0001 01 1 

2 0010 02 2 

3 0011 03 3 

4 0100 04 4 

5 0101 05 5 

6 0110 06 6 

7 0111 07 7 

8 1000 10 8 

9 1001 11 9 

10 1010 12 A 

11 1011 13 B 

12 1100 14 C 

13 1101 15 D 

14 1110 16 E 

15 1111 17 F 

 

 

 

⋯ 163 162 161 160 ∙ 16−1 16−2 16−3 16−4 ⋯ 



 

5 
 

1.6 Decimal to Binary Conversion: 

Decimal number can be convertedto binary by repeatedly dividing the number by 2 for 

integer part and collecting the reminders.The remainders can be written in the reverse 

order(from bottom to top) to get binary result. For fractional part, it has to be multiplied by 

2 successively and collecting the carries, to write from top to bottom. The multiplication is 

repeated till the fractional part becomes zero or the required number of significant bit is 

obtained. 

1. Convert (19)10 into its Binary equivalent 

 

  

  

 

(19)10 =   10011 2 

2. Convert(0.625)10  into its Binary equivalent 

0.625 × 2 = 1.250  𝑐𝑎𝑟𝑟𝑦 𝑖𝑠   1   𝑀𝑆𝐵  

0.250 × 2 = 0.500  𝑐𝑎𝑟𝑟𝑦 𝑖𝑠   0  

0.500 × 2 = 1.000  𝑐𝑎𝑟𝑟𝑦 𝑖𝑠   1   𝐿𝑆𝐵  

(0.625)10 =   0.101 2 

3. Convert (107.6875)10 to its equivalent Binary 

 

 

 

 

 

0.6875 × 2 = 1.3750  𝑐𝑎𝑟𝑟𝑦 𝑖𝑠   1   𝑀𝑆𝐵  

0.3750 × 2 = 0.7500 𝑐𝑎𝑟𝑟𝑦 𝑖𝑠    0 

0.7500 × 2 = 1.500 𝑐𝑎𝑟𝑟𝑦 𝑖𝑠      1 

0.5000 × 2 = 1.000 𝑐𝑎𝑟𝑟𝑦 𝑖𝑠      1    𝐿𝑆𝐵  

(107.6875)10 = (1101011.1011)2 

  4 

19 2 

  9 

  2 

2 

2 

2 

1 

1 

0 

1 0 

MSB (Most Significant Bit) 

 

LSB (lowest Significant Bit) 

 
1   0   0   1    1 

MSB LSB 

1   0   1 1   0   1 
MSB LSB 

MSB LSB 
1   1  0   1  0   1    1 

  26 

MSB (Most Significant Bit) 

 

LSB (lowest Significant Bit) 

 

107 2 

  53 

  13 

2 

2 

2 

1 

1 

0 

6 1 

3 0 

1 1 

2 

2 

1   0   1  1 
LSB MSB 



 

6 
 

1.7 Binary to Decimal Conversion: 

A binary number can be converted into decimal number by adding the products of 

eachbitanditscorresponding weight. 

Example: 

(i) (101)2 = 1 × 22 + 0 × 21 + 1 × 20 

= 4 + 0 + 1 

= (5)10 

(ii) (10011)2 = 1 × 24 + 0 × 23 + 0 × 22 + 1 × 21 + 1 × 20 

= 16 + 0 + 0 + 2 + 1 

= (19)10  

(iii) (0.101)2 = 1 × 2−1 + 0 × 2−2 + 1 × 2−3 

= 1 × 0.5 + 0 + 1 × 0.125 

= 0.5 + 0 + 0.125 

= (0.625)10 

(iv) (1101011.1011)2 

(1101011)2 = 1 × 26 + 1 × 25 + 0 × 24 + 1 × 23 + 0 × 22 + 1 × 21 + 1 × 21 

= 64 + 32 + 0 + 8 + 0 + 2 + 1 

= (107)10 

 0.1011        =  1 × 2−1 + 0 × 2−2 + 1 × 2−3 + 1 × 2−4 

= 0.5 + 0 + 0.125 + 0.0625 

= (0.6875)10 

∴ (1101011.1011)2 = (107.6875)10  

1.8 Hexadecimal to Decimal: 

A hexadecimal number can be converted into decimal number by adding the products of 

each digit and its corresponding weight. The weights are power of 16. 

Example: 

1. Convert  hexadecimal  𝐷5 16 to decimal 

 𝐷5 16 = (13 × 161 + 5 × 160) ⟹    𝐷 16 =  13 10  

= 13 × 16 + 5 × 1 

= 208 + 5 

=  213 10  

𝑖𝑒. ,  𝐷5 16 =  213 10  

 



 

7 
 

2. Convert  hexadecimal  3𝐹𝐶. 8 16 to decimal 

 3𝐹𝐶. 8 16 =  3 × 162 + 15 × 161 + 12 × 160 + 8 × 16−1  

⟹  𝐹 16 =  15 10& 𝐶 16 =  12 10 

= 3 × 256 + 15 × 16 + 12 × 1 + 8 ×
1

16
 

= 768 + 240 + 12 + 0.5 

=  1020.5 10  

𝑖𝑒. ,  3𝐹𝐶. 8 16 =  1020.5 10 

1.9 Decimal to Hexadecimal: 

Decimal number can be converted to hexadecimal by repeatedly dividing the number by 16 

for integer part and collecting the reminders. The remainders can be written in the reverse 

order (from bottom to top) to get hex result. For fractional part, it has to be multiplied by 16 

successively and collecting the carries, to write from top to bottom. The multiplication is 

repeated till the fractional part becomes zero or the required numbers of significant digits 

are obtained. 

Example: 

1. Convert (1020)10 to hexadecimal 

 

 

 

 

  1020 10 =   3𝐹𝐶 16  

2. Convert  98.625 10 to hexadecimal 

 

  

0.625 × 16 = 10.000   𝑐𝑎𝑟𝑟𝑦 𝑖𝑠  10 ⟹ 𝐴 

 98.625 10 =   (62.𝐴)16  

1.10 HexadecimaltoBinary: 

Hexadecimal numbers can be converted into binary numbers by converting each 

hexadecimal digit to its 4-bit binary equivalent 

 

  3 

1020 16 

  63 16 

Type equation here. 

12 

15 

MSB (Most Significant Bit) 

 

LSB (lowest Significant Bit) 

 3   F   C        
MSB LSB 

Type equation here. 

C 

Type equation here. 

F 

98 16 

6 2 
6  2 

MSB 
LSB 



 

8 
 

1. Convert  25 𝐻  to Binary 

 25 𝐻 =  0010   0101    
2
 

2. Convert  3𝐴. 7 𝐻  to Binary 

 3𝐴 𝐻 =  0011   1010    
2
 

 . 7 𝐻 =  . 0111    
2

 

 3𝐴. 7 𝐻 =  0011   1010   ∙ 0111    
2
 

3. Convert  𝐶𝐷.𝐸8 𝐻  to Binary 

 𝐶𝐷 𝐻 =  1100   1101    
2
 

 .𝐸8 𝐻 =  . 1110   1000    
2
 

 𝐶𝐷.𝐸8 𝐻 =  1100   1101   ∙ 1110   1000    
2
 

1.11 Binary to Hexadecimal: 

Conversion from binary to hexadecimal is easily accomplished by partitioning the binary 

number into groups of four binary digits, starting from the binary point to the left and to the 

right. It may be necessary to add zeros to the last group, if it does not end in exactly four 

bits. Each group of 4-bits binary must be represented by its hexadecimal equivalent. 

1.  1010 ∙ 1101 2 =   𝐴 ∙ 𝐷 𝐻 

2.  110 ∙ 101 2  =   0110 ∙ 1010 2 =   6 ∙ 𝐴 𝐻  

3.  1110 ∙ 11 2  =   1110 ∙ 1100 2 =   𝐸 ∙ 𝐶 𝐻 

1.12 Octal to Decimal: 

Anoctal number can be converted into decimal number by adding the products of each digit 

and its corresponding weight. The weights are power of 8. 

1.  75 8 = 7 × 81 + 5 × 80 

= 56 + 5 

=   61 10  

2.  45 ∙ 6 8 = 4 × 81 + 5 × 80 + 6 × 8−1 

= 32 + 5 + 0.75 

=   37.75 10 

 

2 5 

3 A 

7 

3 A 7 

C D 

E 

C D E 

8 

8 



 

9 
 

1.13 Decimal to octal: 

Decimal number can be converted to octal by repeatedly dividing the number by 8 for 

integer part and collecting the reminders. The remainders can be written in the reverse 

order (from bottom to top) to get octal result. For fractional part, it has to be multiplied by 8 

successively and collecting the carries, to write from top to bottom. The multiplication is 

repeated till the fractional part becomes zero or the required numbers of significant digits 

are obtained. 

1. Convert  68 10  to octal 

 

 

  

 68 10 =  104 8 

2. Convert  98.625 10to Octal 

 

 

0.625 × 8 = 5.0000  𝑐𝑎𝑟𝑟𝑦 𝑖𝑠  5 

 98.625 10 =  142.5 8 

1.14 Octal to Binary: 

Octal numbers can be converted into binary numbers by converting each octal digit to its 3-

bit binary equivalent 

1.  27 8 =   010 111  
2
 

2.  135 8 =   001 011 101  
2
 

3.  45.5 8 =   100 101 ∙ 101  
2
 

 

 

 

  1 

68 8 

 8 8 

Type equation here. 

4 

0 

MSB (Most Significant Bit) 

 

LSB (lowest Significant Bit) 

 
1   0   4       

MSB LSB 

  1 

98 8 

 12 8 

Type equation here. 

2 

4 

MSB (Most Significant Bit) 

 

LSB (lowest Significant Bit) 

 
1   4   2       

MSB LSB 

2 7 

1 3 5 

4 5 5 



 

10 
 

1.15 Binary to Octal: 

Conversion from binary to octal is the simplest procedure by grouping the binary number 

into groups of three binary digits, starting from the binary point to the left and to the right. 

It may be necessary to add zeros to the last group, if it does not end in exactly three bits. 

Each group of 3-bits binary must be represented by its octal equivalent. 

1.  10  101 2 =  010  101 2 =  25 8 

2.  101011 2 =  101  011 2 =  53 8 

3.  11110.11 2 =  011  110 .  110 2 =  36.6 8 

4.  11011011. 1111 2 =  011  011 011.  111 100 2 =  333.74 8 

1.16 Hexadecimal to Octal: 

This can be achieved by first writing down the four bit binary equivalent of hexadecimal 

digit and then partitioning it into group of 3 bits each. Finally, the three bit octal 

equivalent is written down. 

Example:  

1. Convert  2𝐴𝐵. 9 𝐻  to octal 

𝐻𝑒𝑥𝑎 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 →          2         𝐴         𝐵 .     9 

↓           ↓          ↓ .     ↓ 

4 𝑏𝑖𝑡  𝐵𝑖𝑛𝑎𝑟𝑦 𝑁𝑢𝑚𝑏𝑒𝑟    →     0010  1010  1011 .  1001 

3 𝑏𝑖𝑡  𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛                 →     001 010 101 011        .     100 100  

↓        ↓   ↓ ↓       .     ↓  ↓ 

𝑂𝑐𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟                   →       1       2   5      3 .     4 4 

 

∴   2𝐴𝐵. 9 16  =   1253.44 8 

 

2. Convert  3𝐹𝐶. 82 𝐻  to octal 

𝐻𝑒𝑥𝑎 𝑑𝑒𝑐𝑖𝑚𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 →          3         𝐹         𝐶 .     8         2 

↓           ↓          ↓ .      ↓         ↓ 

4 𝑏𝑖𝑡  𝐵𝑖𝑛𝑎𝑟𝑦 𝑁𝑢𝑚𝑏𝑒𝑟    →     0011  1111  1100 .  1000 0010 

3 𝑏𝑖𝑡  𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛                 →     001 111 111 100        .     100 000 100  

↓        ↓   ↓ ↓       .     ↓      ↓   ↓ 

𝑂𝑐𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟                   →       1       7   7      4 .     4     0  4 

 

∴   3𝐹𝐶. 82 16  =   1253.44 8 

 

 



 

11 
 

1.17 Octal to Hexadecimal: 

This can be achieved by first writing down the three bit binary equivalent of octal digit 

and then partitioning it into group of 4 bits each. Finally, the four bit hexadecimal 

equivalent is written down. 

1. Convert  16.2 8 to Hexadecimal 

 

𝑜𝑐𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 →          1         6 .      2 

↓           ↓ .      ↓ 

3 𝑏𝑖𝑡  𝐵𝑖𝑛𝑎𝑟𝑦    →       001    110 .  010 

↓           ↓ .      ↓ 

             4 𝑏𝑖𝑡  𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 →     0000   1110        .     0100    

↓            ↓ .      ↓ 

𝐻𝑒𝑥 𝑁𝑢𝑚𝑏𝑒𝑟    →         0               𝐸         .         4 

 

∴   16.2 8  =   0𝐸. 4 16 = (𝐸. 4)𝐻  

A zero is added to the right most group to make it a   group of 4 bits and left most zeros 

are dropped 

2. Convert  764.352 8 to Hexadecimal 

 

𝑜𝑐𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 →          7         6      4 .    3       5      2 

↓           ↓      ↓ .     ↓       ↓      ↓ 

3 𝑏𝑖𝑡  𝐵𝑖𝑛𝑎𝑟𝑦    →       111    110 100 .  011  101 010 

↓           ↓      ↓ .     ↓        ↓      ↓ 

             4 𝑏𝑖𝑡  𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 →     0001   1111   0100       .     0111   0101   0000    

↓            ↓      ↓ .      ↓       ↓       ↓ 

𝐻𝑒𝑥 𝑁𝑢𝑚𝑏𝑒𝑟   →          1               𝐹         4         .         7           5          0 

 

∴   764.352 8  =   1𝐹4.750 16 = (1𝐹4.75)𝐻  

1.18 Binary Arithmetic: 

Arithmetic operations such as addition, subtraction, multiplication and division can be 

performed on binary numbers. 

1.18.1 Binary addition: 

 The addition of two Binary numbers is very similar to addition of two decimal 

numbers. It is key to binary subtraction, multiplication and division.The following rules are 

followed while adding two binary numbers. 



 

12 
 

Augend  +   Addend 
  (A) (B) 

  Carry          Sum 
  (A) (B) 

  Result 

     0         +        0      0                 0 0 

     0         +        1      0                 1 1 

     1         +        0 01 1 

     1         +        1      1                 0 10   ; read as 0 with a carry 1 

1             + 1           +1      1                 1 11   ; read as 1 with a carry 1 

 

Example:  

1. Add the binary numbers  (i) 1011 and 1110   (ii) 10.001 and 11.110 

 (i) 

 

 

(ii) 

 

 

  

1.18.2 Binary subtraction: 

 The subtraction of two Binary numbers is very similar to subtraction of two 

decimal numbers. Subtraction is the inverse operation of addition. The following rules are 

used in subtracting two binary numbers. 

Minuend   -  Subtrahend   Difference      Borrow 

     0            -             0       0                     0 

     1            -             0       1                     0 

1            -             1 0                     0 

0            -             1 1                     1   read as difference 1 with borrow 1 

 

 

 

 

Binary Number Equivalent Decimal 

            1 1 1       Carry  

               1 0 1 1         11 

+             1 1 1 0         14 

Sum=  1 1 0 0 1         25  

Binary Number Equivalent Decimal 

            1                 Carry  

               1 0  . 0 0 1 2 . 1 2 5 

+             1 1  . 1 1 0 +  3 . 7 5 0 

Sum=  1 0 1  . 1 1 1 5 . 8 7 5  



 

13 
 

Example: 

1. Subtract the binary numbers  (i) 101 from 1001   (ii) 11and 10000 

(i)  

 

 

 

(ii) 

 

 

1.18.3 Binary Multiplication: 

 Themultiplicationof two Binary numbers is very similar to multiplication of 

two decimal numbers. The following rules are used to multiply two binary numbers. 

(i) 0 × 0 = 0 

(ii) 0 × 1 = 0 

(iii) 1 × 0 = 0 

(iv) 1 × 1 = 1 

 

Example: 

Multiply the following binary numbers (i) 1011 and 1101   and (ii) 1.01 and 10.1 

(i) 

 

 

 

Binary Number Equivalent Decimal 

                      1 0 0 0 0 16 

        -                 1 1  - 3 

Difference =         1 1 0 1         13 

Binary Number Equivalent Decimal 

                           1 0 0 1         9 

-                  1 0 1       - 5 

Difference =        1 0 0         4  

Binary Multiplication  Equivalent decimal 
Multiplicand     1011 
Multiplier     ×  1101 
                            1011  
                         0000 
                       1011 
                     1011 
                   10001111 
 

                       11 
×   13 

          33 
        11 

  143 



 

14 
 

 

(ii) 

 

 

 

 

1.18.4 Binary Division: 

 The division in Binary is exactly same as in decimal. The division by 0 is not 

allowed. The binary division has only two rules. 

(i) 0 ÷ 1 = 0       and     (ii)   1 ÷ 1 = 1 

Example: 

Divide the binary numbers (i) 11001 by 101    (ii) 1010 by 100 

 (i) 

 

 

 

 

 

 

(ii) 

 

 

 

 

 

 

 

Binary Multiplication  Equivalent decimal 
Multiplicand     1.01 
Multiplier     ×  10.1 
                             101  
                           000 
                         101 
11001 
11.001 

1.25 
×2.5 

  625 
 240 

  3025 
 
3.025 

Binary Division  Equivalent decimal 
 
                 101 
       101   11001 
                 101 

    00101 
         101 
     00000 

                   5  
 5  25 
     25 
      0 

Binary Division  Equivalent decimal 
 
                 10.1 
       100   1010 
                 100 

    00100 
         100 
     00000 

 
                 2.5  

 4  10 
       8 
       20 
       20 
        0 



 

15 
 

1.19 Complements: 

 Complements are used in digital computers for simplifying the subtraction 

operation and for logical manipulation. There are two types of complements, one is𝑟’𝑠  

complement and another is (𝑟 − 1)’𝑠  complement, where 𝑟 is base of the system. For 

binary system the base 𝑟 is 2, therefore 2’s complement and 1’s complement is possible. 

1.19.1  1’s complement: 

 1’s complement of a binary number is formed by simply changing each 1in the 

number to 0 and each 0 in the number to 1. 

Example: 

Binary Number Equivalent 1’s complement 

1011           ⟹ 

110001       ⟹ 

100100    ⟹ 

11001110 ⟹ 

1010110  ⟹ 

0100 

001110 

011011 

00110001 

01010010 

 

1.19.2  1’s complement Subtraction: 

(i)  To subtract a smaller number from a larger number, the procedure is as follows: 

 1. Determine the 1’s complement of the smaller number. 

 2.  Add the 1’s complement to the larger number 

 3.  Remove the carry and add to the sum. The carry is called end-around carry. 

The number of bits in the minuend and subtrahend must be equal. 

Example: 

1. Subtract (01110)2  from (10001)2 using 1’s complement 

Direct Method of 
binary subtraction 

1’s complement method of 
subtraction 

Equivalent Decimal 
subtraction 

10001 

- 01110 

00011 

10001 

+ 10000  (1’s complement of 10001) 

 100010(end-around carry1) 
          +1  (add carry to sum) 
   00011 

17 

- 14 
  3   

 



 

16 
 

2. Subtract (101101)2 from (110011)2using 1’s complement 

Direct Method of 
binary subtraction 

1’s complement method of 
subtraction 

Equivalent Decimal 
subtraction 

110011 

- 101101 

000110 

110011 

+ 010010(1’s complement of 101101) 

 1000101  (end-around carry1) 
            +1  (add carry to sum) 
   000110 

51 

- 45 
6 

 

(ii) To subtract a larger number from a smaller binary number , the procedure is as follows 

 1. Determine the 1’s complement of the larger number. 

 2.  Add the 1’s complement to the smaller number 

 3.  The answer has an opposite sign and is the result. There is no carry 

Example: 

1.Subtract(10010)2 from (1100)2using 1’s complement 

Direct Method of 
binary subtraction 

1’s complement method of 
subtraction 

Equivalent Decimal 
subtraction 

01100 

- 10010 

- 00110 

01100 

+ 01101(1’s complement of 10010) 

   11001   
put – sign and take 1’s complement for 
the sum we get ,    -00110 

             51 

- 45 
-6 

 

2. Subtract (1101)2 from (1010)2using 1’s complement 

 

 

 

 

 

 

 

Direct Method of 
binary subtraction 

1’s complement method of 
subtraction 

Equivalent Decimal 
subtraction 

1010 

- 1101 

- 0011 

1010 

+ 0010(1’s complement of 1101) 

   1100   
put – sign and take 1’s complement for 
the sum we get ,    -0011 

             10 

- 13 
-       3 



 

17 
 

1.19.2  2’s Complement: 

The 2’s complement of a binary number is formed by taking 1’s complement of the number 

and adding 1 to the least significant bit (LSB) position 

2’𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 =  1’𝑠 𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡 +  1 

Example: 

Write 2’s complement of a binary number  1010 2 

 
 
 
 
 
Some more Example: 
 

Binary Number 1’s complement 2’s complement 

1011                   ⟹ 

110001               ⟹ 

100100               ⟹ 

11001110         ⟹ 

1010110           ⟹ 

0100⟹ 

001110⟹ 

011011⟹ 

00110001⟹ 

01010010⟹ 

0101 

001111 

011100 

00110010 

01010011 

 

1.20 Binary coded System: 

In general, coding is the process of assigning a group of binary digits to represent 

multivalued items of information. Binary coded decimal (BCD) is a system of writing 

numerals that assigns a four-digit binary code to each digit 0 through 9 in a decimal (base-

10) numeral. The four-bit BCD code for any particular single base-10 digit is its 

representation in binary notation, as follows: 

 
Numbers larger than 9, having two or more digits in the decimal system, are expressed digit 

by digit, For example, the BCD interpretation of the base-10 number 1895 is 

ie., 1895 = 0001 1000 1001 0101 

 

1’s complement of 1010   =  0101 
                                 Add 1   =      + 1 
2’s complement of 1010   =  0110 
 

0 1 2 3 4 5 6 7 8 9 

 
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 

1 8 9 5 

0001 1000 1001 0101 



 

18 
 

The binary equivalents of 1, 8, 9, and 5, always in a four-digit format, go from left to right. 

Binary codes are broadly classified into Numeric codes, Alphanumeric codes and 

Error detecting codes. Numeric codes are further classified into weighted codes and non- 

weighted codes. The most obvious way of encoding digits is "natural BCD" (NBCD), where each 

decimal digit is represented by its corresponding four-bit binary value. This is also called "8421" 

encoding.Standard binary coded decimal code is commonly known as a weighted 8421 BCD 

code, with 8, 4, 2 and 1 representing the weights of the different bits starting from the most 

significant bit (MSB) and proceeding towards the least significant bit (LSB). The weights of 

the individual positions of the bits of a BCD code are:  23  =  8,  22 =  4,  21  =  2,  20  =  1. 

The main advantage of the Binary Coded Decimal system is that it is a fast and 

efficient system to convert the decimal numbers into binary numbers as compared to the 

pure binary system However, the disadvantage is that BCD code is inefficient as the states 

between 1010(decimal 10), and 1111 (decimal 15) are not used. 

In non-weighted code, there is no positional weight i.e. each position within the 

binary number is not assigned a prefixed value. No specific weights are assigned to bit 

position in non –weighted code. The non-weighted codes are classified to  

a) The Excess-3 codeb) The Gray code 

1.21Excess-3 code: 

Excess-3 code is an important BCD code, is a 4 bit code and used with BCD numbers 

as weights are not assigned, it is a kind of non- weighted codes. Excess-3 code was used on 

some older computers, cash registers and hand held portable electronic calculators.The 

Excess-3 code for a given decimal number is determined by adding '3' to each decimal digit 

in the given number and then replacing each digit of the newly found decimal number by its 

four bit binary equivalent. The table gives the Excess-3 code. 

 

 

 

 

 

 

 

 

Decimal 8421 Excess-3 

0 0000 0011 

1 0001 0100 

2 0010 0101 

3 0011 0110 

4 0100 0111 

5 0101 1000 

6 0110 1001 

7 0111 1010 

8 1000 1011 

9 1001 1100 



 

19 
 

1.21.1 Decimal to Excess-3 code: 

Excess-3 code of 24 is obtained as 

  2       4 

+3    +3 

  5       7 

0101 0111 

Thus, Excess-3 code of 24 is 0101 0111. 

Similarly, Excess-3 code for (597)10 and (14.57)10 is 

(597)10 = (100011001010) 

(14.57)10 = (01000111.10001010) 

1.21.2 Excess-3 to Decimal: 

From given Excess-3 code, the equivalent decimal number can be determined by first 

splitting the number into four-bit groups, starting from radix point and then subtracting 

0011 from each four-bit group. This gives us 8421 BCD equivalent of the given Excess-3 

code, which can then be converted into the equivalent decimal number.  

Example: 

Determine the decimal equivalent for the Excess-3 code 1000110.  

0100   0110    

Then Subtracting 0011 from each group,  

 

 

The new number as 00010011. Its decimal equivalent is 13. 

1.22 Gray code: 

The Gray code was designed by Frank Gray at Bell Labs in 1953. It belongs to a class of codes 

called the minimum change code. The successive coded characters never differ in more than 

one-bit.The Gray code is a non-weighted code. Because of this, the· gray code is not suitable 

for arithmetic operations but finds applications in input/output devices, some analog-to-

digital converters and designation of rows and columns in Karnaugh map etc. 

 A three-bit gray code can be obtained by merely reflecting the two-bit code about 

an axis at the end of the code and assigning a third-bit as 0 above the axis and as 1 below 

the axis. The reflected gray code is nothing but code written in reverse order. By reflecting 

three-bit code, a four-bit code may be obtained. 

             0100 
- 0011 

              0001 

0110 
- 0011 

              0011 



 

20 
 

 

 

 

 

 

 

 

 

 Process of obtaining 4 bit Gray code by reflecting 3 bit Gray code: 

 

 

 

 

 

 

 

 

 

 

1.22.1 Decimal to Gray code conversion: 

Example 

1. Covert  39 10  to gray code 

The Gray code equivalent of decimal number 3 and 9 is     
0010   1101   

3 9
 

The four-bit gray code for decimal number  39 10 ⟹  00101101 𝐺𝑟𝑎𝑦  𝑐𝑜𝑑𝑒 . 

 Similarly, gray code for (923.1)10 and (327) is 

(923.1)10 = (1101 0011 0010.0001) Gray code 

(327)10 = (100011 0100) Gray code 

0 0  
 0 1 

1 1 
1 0 

0 0 0  
0 0 1 
0 1 1 
0 1 0 

1 1 0 
1 1 1 
1 0 1 
1 0 0 

 
Process of obtaining 3 bit Gray code by reflecting 2 bit Gray code: 
 

 
 
 
 

 
 
 
 

 

Decimal Binary Gray Code  
0 0000 0 0 0 0 
1 0001 0 0 0 1 
2 0010 0 0 1 1 
3 0011 0 0 1 0 
4 0100 0 1 1 0 
5 0101 0 1 1 1 
6 0110 0 1 0 1 
7 0111 0 1 0 0 

8 1000 1 1 0 0 
9 1001 1 1 0 1 
10 1010 1 1 1 1 
11 1011 1 1 1 0 
12 1100 1 0 1 0 
13 1101 1 0 1 1 
14 1110 1 0 0 1 
15 1111 1 0 0 0 



 

21 
 

1.22.2 Binary to Gray code conversion: 

 The most significant bit (MSB) in the Gray code is same as the corresponding bit in 

the binary number 

 Going from left to right, add each adjacent pair of binary bit to get the next Gray 

code bit and discard the carry. 

Example:  

Convert (1011)2 to Gray code 

 

 

 (1011)2 =  (1110)𝐺𝑟𝑎𝑦  

 

1.22.3 Grayto Binarycode conversion: 

 The most significant bit (MSB) in the Binary code is same as the corresponding bit in 

the Gray code 

 Going from left to right, add each binary bit generated to the gray digit in the next 

adjacent position and discard the carry. 

Example:  

Convert (1110)𝐺𝑟𝑎𝑦  to Binary code 

 

 

 

 

(1110)𝐺𝑟𝑎𝑦 = (1011)2 

 

 

 

 

Step 1 1   0  1  1 Binary 
 ↓  
 1 Gray 
Step 2 1 + 0  1  1 Binary 
 1    1 Gray 
Step 3 1   0 + 1  1 Binary 
 1   1   1 Gray 
Step 4 1  0   1 + 1 Binary 
 1   1   1   0 Gray 

Step 1 1   110 Gray 

 ↓  
 1 

     + 
Binary 

Step 2 1  110 Gray 

  
1   0   

Binary 

Step 3           + 
1   11  0 

Gray 

  
1   0   1 

Binary 

Step 4                + 
1   1   1  0 

Gray 

 1   0   1   1 Binary 



 

22 
 

1.23 Alphanumeric code: 

Alphanumeric codes are also called character codes due to their certain properties. 

These codes are basically binary. These codes are used to write alphanumeric data, 

including data, letters of the alphabet, numbers, mathematical symbols and punctuation 

marks which can be easily understandable and can be processed by the computers. Input 

output devices such as keyboards, monitors, mouse can be interfaced using these codes. A 

complete alphanumeric code would include the 26 lowercase letters , 26 uppercase letters, 

10 numeric digits, 7  punctuation marks  and anywhere from 20 to 40 other characters such 

as +,  /,  * , # and so on. That is it represents all of the various characters and functions that 

are found on a standard typewriter or computer keyboard. The most common alphanumeric 

codes used are ASCII code, EBCDIC code and Unicode.  

1.23.1 ASCII code 

The full form of ASCII code is American Standard Code for Information Interchange. 

It is a seven bit code based on the English alphabet. In 1967 this code was first published 

and since then it is being modified and updated. ASCII code has 128 characters some of 

which are enlisted below to get familiar with the code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dec Octal Hex Binary Symbol Description 

1 001 01 00000001 SOH Start of Heading 

2 002 02 00000010 STX Start of text 

3 003 03 00000011 ETX End of text 

4 004 04 00000100 EOT End of transmission 

5 005 05 00000101 ENQ Enquiry 

6 006 06 00000110 ACK Acknowledgement 

7 007 07 00000111 BEL Bell 

8 010 08 00001000 BS Back Space 

9 011 09 00001001 HT Horizontal Tab 

10 012 0A 00001010 LF Line Feed 

11 013 0B 00001011 VT Vertical Tab 

12 014 0C 00001100 FF Form Feed 

13 015 0D 00001101 CR Carriage Return 

14 016 0E 00001110 SO Shift Out/X-On 

15 017 0F 00001111 SI Shift In/X-O 



 

23 
 

Example: 

The following is a message encoded in ASCII code. What is the message? 

01001000  1000101  1001100  1010000 

Solution: 

Convert each 7 bit code to its Hexadecimal equivalent 

0100 1000          0100 0101          0100 1100            0101 0000 

    4         8                 4        5                   4        𝐶                    5        0 

The result are 48   45   4C   50 

Locate these hexadecimal values in table ASCII and determine the character represented by 

each. The result are:  H  E  L  P  

1.23.2 EBCDIC code: 

 
The EBCDIC stands for Extended Binary Coded Decimal Interchange Code. IBM 

invented this code to extend the Binary Coded Decimal which existed at that time. All the 

IBM computers and peripherals use this code. It is an 8 bit code and therefore can 

accommodate 256 characters. Below is given some characters of EBCDIC code to get familiar 

with it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

O 1101 0110 D6 3 1111 0011 F3 /   



 

24 
 

1.24.3 Unicode 

Unicode is the newest concept in digital coding. In Unicode every number has a 

unique character. Leading technological giants have adopted this code for its uniqueness.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 
 

Unit II  Boolean algebra 

Boolean operation-rules and laws of Boolean algebra-Demorgan’s theorem-implications of 

expression using Boolean algebra-Karnaugh map 

2.1 Boolean algebra:  

Boolean algebra or switching algebra is a system of mathematical logic to perform 

different mathematical operations in binary system. Boolean algebra which was formulated 

by George Boole, an English mathematician (1815-1864) described propositions whose 

outcome would be either true or false. There only three basis binary operations, AND, OR 

and NOT by which all simple as well as complex binary mathematical operations are to be 

done. There are many rules in Boolean algebra by which those mathematical operations are 

done. In Boolean algebra, the variables are represented by English Capital Letter like A, B, 

C,etc. and the value of each variable can be either 1 or 0, nothing else. In Boolean algebra an 

expression given can also be converted into a logic diagram using different logic gates like 

AND gate, OR gate and NOT gate, NOR gates, NAND gates, XOR gates, XNOR gates etc. 

Some basic logical Boolean operations:  

 

2.2 Some Basic laws for Boolean Algebra: 

2.2.1 Boolean Postulates: 

1. 𝐴 . 0 =  0  𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

2. 𝐴 . 1 =  𝐴𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

3. 𝐴 .𝐴 =  𝐴𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

4. 𝐴 . Ā =  0 𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1.  

5. Ā      =  𝐴𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

6. 𝐴 +  0 =  𝐴𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

7. 𝐴 +  1 =  1 𝑤ℎ𝑒𝑟𝑒𝐴𝑐𝑎𝑛𝑏𝑒𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

8. 𝐴 +  Ā =  1 

AND Operation OR Operation NOT Operation 

0.0 =  0 

0.1 =  0 

1.0 =  0 

1.1 =  1 

0 +  0 =  0 

0 +  1 =  0 

1 +  0 =  0 

1 +  1 =  1 

1 = 0 

0 = 1 

 



 

26 
 

9. 𝐴 +  𝐴 =  𝐴 

10. 𝐴 +  𝐵 =  𝐵 +  𝐴  𝑤ℎ𝑒𝑟𝑒 𝐴 𝑎𝑛𝑑 𝐵𝑐𝑎𝑛 𝑏𝑒 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1. 

11. 𝐴 .𝐵 =  𝐵 .𝐴  𝑤ℎ𝑒𝑟𝑒 𝐴 𝑎𝑛𝑑 𝐵 𝑐𝑎𝑛 𝑏𝑒 𝑒𝑖𝑡ℎ𝑒𝑟 0 𝑜𝑟 1.  

12. 0 = 1,  1 = 0;   𝑖𝑓𝐴 = 1 𝑡ℎ𝑒𝑛 𝐴 = 0 𝑎𝑛𝑑𝑖𝑓𝐴 = 0 𝑡ℎ𝑒𝑛 𝐴 = 1   

2.2.2 Boolean Laws: 

1.  Commutative Law:  According to Commutative Law, the order of OR operations and AND 

operations conducted on the variables makes no differences.  

(a) 𝐴 +  𝐵 =  𝐵 +  𝐴 

(b)    𝐴𝐵     =  𝐵𝐴 

2. Associate Law:  This law is for several variables, where the OR operation of the variables 

result is same though the grouping of the variables different. This law is quite same in case 

of AND operators.  

(a) (𝐴 +  𝐵)  +  𝐶 =  𝐴 +  (𝐵 +  𝐶)  

(b)  (𝐴𝐵) 𝐶         =    𝐴 (𝐵𝐶) 

3. Distributive Law:  This law is composed of two operators, AND and OR.  

(a) 𝐴 (𝐵 +  𝐶)  =  𝐴𝐵 +  𝐴𝐶 

(b) 𝐴 + (𝐵𝐶)  =  (𝐴 +  𝐵) (𝐴 +  𝐶) 

4. Identity Law 

(a) 𝐴 +  𝐴 =  𝐴  

(b) 𝐴𝐴    =  𝐴 

5. Redundance Law 

a) 𝐴 +  𝐴𝐵     = 𝐴 

b) 𝐴 (𝐴 +  𝐵)  = 𝐴 

c) 𝐴𝐵 + 𝐴𝐵      = 𝐴 

d) 𝐴  𝐴 + 𝐵    = 𝐴𝐵 

e) 𝐴 + 𝐴 𝐵        = 𝐴 + 𝐵 

f)  𝐴 + 𝐵  𝐴 + 𝐵  = 𝐴 

6. De Morgan's Theorem 

a)  𝐴 + 𝐵          = 𝐴 𝐵  

b)  𝐴𝐵            = 𝐴 +  𝐵  



 

27 
 

The laws of Boolean algebra are also true for more than two variables. 

Let us show one use of this law to prove the expression 𝐴 + 𝐵.𝐶 =  𝐴 + 𝐵 . (𝐴 + 𝐶) 

Proof: 

𝐴 + 𝐵𝐶 = 𝐴. 1 + 𝐵.𝐶   (𝑠𝑖𝑛𝑐𝑒,𝐴. 1 = 𝐴) 

= 𝐴.  1 + 𝐵 + 𝐵.𝐶  (𝑠𝑖𝑛𝑐𝑒,𝐵 + 1 = 1) 

= 𝐴.  1 + 𝐶 + 𝐴𝐵 + 𝐵𝐶  (𝑠𝑖𝑛𝑐𝑒,𝐴.𝐴 = 𝐴. 1 = 𝐴) 

= 𝐴. 1 + 𝐴𝐵 + 𝐵𝐶 

= 𝐴 𝐴 + 𝐶 + 𝐵(𝐴 + 𝐶) 

= (𝐴 + 𝐵)(𝐴 + 𝐶) 

Proof of De Morgan’s Theorem by truth table, 

𝐴 + 𝐵        =  𝐴 ∙ 𝐵  

𝐴 ∙ 𝐵      =  𝐴 +  𝐵  

 

 

 

 

 

 

𝐶𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑟 𝐴 + 𝐵         𝑎𝑛𝑑 𝐴 𝐵  𝑎𝑟𝑒 𝑠𝑎𝑚𝑒  

𝐶𝑜𝑙𝑢𝑚𝑛 𝑓𝑜𝑟 𝐴𝐵     𝑎𝑛𝑑 𝐴 + 𝐵  𝑎𝑟𝑒 𝑠𝑎𝑚𝑒  

 

2.3 Examples of Boolean Algebra: 

1. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦,  𝐴 + 𝐵  (𝐶 + 𝐷 )                     

 𝐴 + 𝐵  (𝐶 + 𝐷 )                    =  (𝐴 + 𝐵)              + (𝐶 + 𝐷)               

= 𝐴 ∙ 𝐵  + 𝐶 ∙ 𝐷   

= 𝐴 𝐵 + 𝐶 𝐷 

Inputs Outputs 

A B 𝐴  𝐵  𝐴 + 𝐵         𝐴 ∙ 𝐵  𝐴 ∙ 𝐵       𝐴 + 𝐵  

0 0 1 1 1 1 1 1 

0 1 1 0 0 0 1 1 

1 0 0 1 0 0 1 1 

1 1 0 0 0 0 0 0 



 

28 
 

There is another method of simplifying complex Boolean expression. In this method there 

are only three simple steps.  

i. Complement entire Boolean expression. 

ii. Change all ORs to ANDs and all ANDs to ORs. 

iii. Complement each of the variables and get final expression. 

By this method,  

Step 1:  𝐴 + 𝐵  (𝐶 + 𝐷 )                    will be first complemented, we get (𝐴 + 𝐵 )(𝐶 + 𝐷 ) 

Step 2: Change all (+) to (.) and (.) to (+) , we get  𝐴𝐵 + 𝐶𝐷  

Step 3: complement each of the variable, we get  𝐴 𝐵 +  𝐶𝐷     

The final simplified form of Boolean expression 𝐴 + 𝐵  (𝐶 + 𝐷 )                    is got at the third step. 

And it is exactly equal to the results which have been got by applying De Morgan Theorem.  

 

2. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦,𝐴𝐵    + 𝐴 + 𝐴𝐵                  

𝐴𝐵    + 𝐴 + 𝐴𝐵)                    =   𝐴𝐵        .𝐴  .𝐴𝐵     

= 𝐴𝐵.𝐴.𝐴𝐵     

= 0 

By Second Method,    

𝐴𝐵    + 𝐴 + 𝐴𝐵                  =   𝐴𝐵    + 𝐴 + 𝐴𝐵  =   𝐴 + 𝐵        .𝐴. 𝐴 + 𝐵 =  𝐴 + 𝐵 .        𝐴.𝐴 + 𝐵  =  0 

3. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦,𝐴𝐵 + 𝐴𝐵 𝐶 + 𝐵𝐶  

𝐴𝐵 + 𝐴𝐵 𝐶 + 𝐵𝐶 = 𝐴 𝐵 + 𝐵 𝐶 + 𝐵𝐶  

= 𝐴 𝐵 + 𝐵 )(𝐵 + 𝐶 + 𝐵𝐶  

= 𝐴𝐵 + 𝐴𝐶 + 𝐵𝐶  𝑆𝑖𝑛𝑐𝑒 𝐵 + 𝐵 = 1 

= 𝐴𝐵 𝐶 + 𝐶  + 𝐴𝐶 + 𝐵𝐶  

= 𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴𝐶 + 𝐵𝐶  

= 𝐴𝐶 1 + 𝐵 + 𝐵𝐶  𝐴 + 1  

= 𝐴𝐶 + 𝐵𝐶  

 

 



 

29 
 

4. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦,𝐶 +  𝐵𝐶    : 

Expression Rule(s) Used 

𝐶 +  𝐵𝐶     Original Expression 

= 𝐶 +  (𝐵  +  𝐶 ) DeMorgan's Law. 

= (𝐶 +  𝐶 )  +  𝐵  Commutative, Associative Laws. 

= 1 +  𝐵 Complement Law. 

= 1 Identity Law. 

 

5. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦 𝐴 𝐵 𝐶  +  𝐴 𝐵𝐶  +  𝐴𝐵 𝐶  +  𝐴𝐵𝐶  

𝐴 𝐵 𝐶  +  𝐴 𝐵𝐶  +  𝐴𝐵 𝐶  +  𝐴𝐵𝐶 =  𝐴 𝐶  𝐵 + 𝐵 + 𝐴𝐶 (𝐵 + 𝐵) 

= 𝐴 𝐶 + 𝐴𝐶   Since  𝐵 + 𝐵 =1 

= 𝐶 (𝐴 + 𝐴) 

= 𝐶  

 

6. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦, (𝐴 +  𝐶)(𝐴𝐷 +  𝐴𝐷 )  +  𝐴𝐶 +  𝐶: 

 

Expression Rule(s) Used 

(𝐴 +  𝐶)(𝐴𝐷 +  𝐴𝐷 )  +  𝐴𝐶 +  𝐶 Original Expression 

= (𝐴 +  𝐶)𝐴(𝐷 +  𝐷 )  +  𝐴𝐶 +  𝐶 Distributive. 

= (𝐴 +  𝐶)𝐴 +  𝐴𝐶 +  𝐶 Complement, Identity. 

= 𝐴((𝐴 +  𝐶)  +  𝐶)  +  𝐶 Commutative, Distributive. 

= 𝐴(𝐴 +  𝐶)  +  𝐶 Associative, Idempotent. 

= 𝐴𝐴 +  𝐴𝐶 +  𝐶 Distributive. 

= 𝐴 +  (𝐴 +  1)𝐶 Idempotent, Identity, Distributive. 

= 𝐴 +  𝐶 Identity, twice. 

 

 

 

 

 

 

 



 

30 
 

7. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦:  𝐴 (𝐴 +  𝐵)  +  (𝐵 +  𝐴𝐴)(𝐴 +  𝐵 ): 

 

Expression Rule(s) Used 

𝐴 (𝐴 +  𝐵)  +  (𝐵 +  𝐴𝐴)(𝐴 +  𝐵 ) Original Expression 

= 𝐴 𝐴 +  𝐴 𝐵 +  (𝐵 +  𝐴)𝐴 +  (𝐵 +  𝐴)𝐵  Idempotent (AA to A), then 
Distributive, used twice. 

= 𝐴 𝐵 +  (𝐵 +  𝐴)𝐴 + (𝐵 +  𝐴)𝐵  Complement, then Identity. 
(Strictly speaking, we also used the 
Commutative Law for each of these 
applications.) 

= 𝐴 𝐵 +  𝐵𝐴 +  𝐴𝐴 +  𝐵𝐵  +  𝐴𝐵  Distributive, two places. 

= 𝐴 𝐵 +  𝐵𝐴 +  𝐴 +  𝐴𝐵  Idempotent (for the A's), then 
Complement and Identity to 
remove BB. 

= 𝐴 𝐵 +  𝐴𝐵 +  𝐴1 +  𝐴𝐵  Commutative, Identity; setting up 
for the next step. 

= 𝐴 𝐵 +  𝐴(𝐵 +  1 +  𝐵 ) Distributive. 

= 𝐴 𝐵 +  𝐴 Identity, twice (depending how you 
count it). 

= 𝐴 +  𝐴 𝐵 Commutative. 

= (𝐴 +  𝐴 )(𝐴 +  𝐵) Distributive. 

= 𝐴 +  𝐵 Complement, Identity. 

 

8. 𝑆𝑖𝑚𝑝𝑙𝑖𝑓𝑦,  𝐴𝐵    (𝐴  +  𝐵)(𝐵  +  𝐵): 
 

Expression Rule(s) Used 

𝐴𝐵    (𝐴  +  𝐵)(𝐵  +  𝐵) Original Expression 

= 𝐴𝐵    (𝐴  +  𝐵) Complement law, Identity law. 

= (𝐴  +  𝐵 )(𝐴  +  𝐵) DeMorgan's Law 

= 𝐴  +  𝐵 𝐵 Distributive law.  

= 𝐴  Complement, Identity. 

 

 

 



 

31 
 

9. Prove that  𝐴 + 𝐵  𝐴𝐶 + 𝐶  𝐵 + 𝐴𝐶 = 𝐴𝐵 𝐶 + 𝐴𝐶 

= (𝐴.𝐴𝐶 + 𝐴.𝐶 + 𝐵.𝐴𝐶 + 𝐵𝐶)(𝐵 + 𝐴𝐶) 

= 𝐴𝐵 𝐶 + 𝐴𝐶 .𝐴𝐶 + 𝐴𝐵 𝐶+.𝐴𝐶 + 𝐴𝐵𝐶 .𝐵 + 𝐴𝐵𝐶. 𝐴𝐶 + 𝐵𝐶.𝐵 + 𝐵𝐶.𝐴𝐶 

= 𝐴𝐵 𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐶 + 𝐴𝐵𝐶 

= 𝐴𝐵 𝐶 + 𝐴𝐶 𝐵 + 1 + 𝐴𝐵𝐶 

= 𝐴𝐵 𝐶 + 𝐴𝐶 + 𝐴𝐵𝐶 

= 𝐴𝐵 𝐶 + 𝐴𝐶(1 + 𝐵𝐶) 

= 𝐴𝐵 𝐶 + 𝐴𝐶 

= 𝐴(𝐶 + 𝐶 𝐵 ) 

= 𝐴(𝐶 + 𝐵 ) 

= 𝐴𝐶 + 𝐴𝐵  

 

2.4 Representation of Boolean function in truth table: 

Boolean algebra deals with binary variables and logic operation. A Boolean function, 

which is described by an algebraic expression called Boolean expression and which consists 

of binary variables, the constants 0 and 1, and the logic operation symbols. Consider the 

following example. 

𝐹 𝐴,𝐵,𝐶,𝐷          
𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

  =   𝐴 +  𝐵𝐶    + 𝐴𝐷𝐶           
𝐵𝑜𝑜𝑙𝑒𝑎𝑛𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

                   𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

The left side of the equation represents the output Y. So we can state equation 1 as 

𝑌 = 𝐴 +  𝐵𝐶    +  𝐴𝐷𝐶 

Truth Table Formation 

A truth table represents a table having all combinations of inputs and their 

corresponding result.It is possible to convert the switching equation into a truth table. For 

example, consider the following switching equation. 

𝐹 𝐴,𝐵,𝐶   =    𝐴 +   𝐵𝐶 

The output will be high (1) if A = 1 or BC = 1 or both are 1. The truth table for this 

equation is given by Table (2.1). The number of rows in the truth table is 2nwhere n is the 

number of input variables (𝑛 = 3 for the given equation). Hence there are 23 =  8 possible 

input combinations of inputs. 



 

32 
 

 
 

Table 2.1: Truth table for 𝐹 = 𝐴 + 𝐵𝐶 

 

 

 

 

 

 

 

 

 

 

 

 Represent the Boolean function 𝐹 𝐴,𝐵,𝐶 =  𝐴 𝐵 + 𝐵 𝐶as truth table in table 2.2. 

 

Table 2.2: Truth table for 𝐹 = 𝐴 𝐵 + 𝐵 𝐶 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Inputs Output 

A B C B C 𝐹 = 𝐴 + 𝐵𝐶 

0 0 0 0 0 

0 0 1 0 0 

0 1 0 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

A B C 𝐴  𝐵  𝐴 𝐵 𝐵 𝐶 𝐴 𝐵 + 𝐵 𝐶 

0 0 0 1 1 0 0 0 

0 0 0 1 1 0 1 1 

0 1 0 1 0 1 0 1 

0 1 1 1 0 1 0 1 

1 0 0 0 1 0 0 0 

1 0 1 0 1 0 1 1 

1 1 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 



 

33 
 

2.5 Logic gates using Boolean Expressions: 
 

1. Draw a logic circuit for  𝐴 +  𝐵 𝐶. 
 

 
 

 

 

 
 

2. Draw a logic circuit for 𝐴 +  𝐵𝐶 +  𝐷.  
 

 

 

 

 

3. Draw a logic circuit for 𝐴𝐵 +  𝐴𝐶    . 

 

 

 

 

 

4. Draw a logic circuit for (𝐴 +  𝐵         ) (𝐶 +  𝐷) 𝐶 . 

 

 

 

 

 

 
 
 
 
 



 

34 
 

2.6 Minterms: 

In general, the unique algebraic expression for any Boolean function can be obtained 

from its truth table by using an OR operator to combined all minterms for which the 

function is equal to 1.  

A minterm, denoted as 𝑚𝑖 , where 0 ≤  𝑖 < 2𝑛  , is a product (AND) of the n 

variables in which each variable is complemented if the value assigned to it is 0, and 

uncomplemented if it is 1.  

1-minterms = minterms for which the function F = 1.  

0-minterms = minterms for which the function F = 0.  

Any Boolean function can be expressed as a sum (OR) of its 1- minterms.  

A shorthand notation: 

 𝐹(𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)  =  ∑(𝑙𝑖𝑠𝑡 𝑜𝑓 1 −𝑚𝑖𝑛𝑡𝑒𝑟𝑚 𝑖𝑛𝑑𝑖𝑐𝑒𝑠)  

Example : 

 

 
 
 

 

 

 

 

 

 

𝐹 =  𝑥′ 𝑦 𝑧 +  𝑥 𝑦′ 𝑧 +  𝑥 𝑦 𝑧′ +  𝑥 𝑦 𝑧  

=  𝑚3  + 𝑚 5 + 𝑚 6 +  𝑚7 

 
𝑜𝑟  
 
𝐹 (𝑥,𝑦, 𝑧)  =  𝛴(3, 5, 6, 7)  

 

 

𝑥 𝑦 𝑧 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠 𝐹 𝐹′ 

0 0 0 𝑚0 = 𝑥′ 𝑦′ 𝑧′ 0 1 

0 0 1 𝑚1 = 𝑥′ 𝑦′ 𝑧 0 1 

0 1 0 𝑚2 = 𝑥′ 𝑦 𝑧' 0 1 

0 1 1 𝑚3 = 𝑥′ 𝑦 𝑧 1 0 

1 0 0 𝑚4 = 𝑥 𝑦′ 𝑧′ 0 1 

1 0 1 𝑚5 = 𝑥 𝑦′ 𝑧 1 0 

1 1 0 𝑚6 = 𝑥 𝑦 𝑧′ 1 0 

1 1 1 𝑚7 = 𝑥 𝑦 𝑧 1 0 



 

35 
 

The inverse of the function can be expressed as a sum (OR) of its 0- minterms.  

A shorthand notation: 

𝐹′(𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)  =  𝛴(𝑙𝑖𝑠𝑡 𝑜𝑓 0 −𝑚𝑖𝑛𝑡𝑒𝑟𝑚 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) 

 

Example: 

𝐹 ′ =  𝑥′ 𝑦′ 𝑧′ +  𝑥′ 𝑦′ 𝑧 +  𝑥′ 𝑦 𝑧′ +  𝑥 𝑦′ 𝑧′  

=  𝑚 0 +  𝑚1  +  𝑚2  +  𝑚4 

 
Or 
 
𝐹 ′ (𝑥,𝑦, 𝑧)  =  𝛴(0, 1, 2, 4) 

 

Problem:  
1. 𝐸𝑥𝑝𝑟𝑒𝑠𝑠 𝑡ℎ𝑒 𝐵𝑜𝑜𝑙𝑒𝑎𝑛 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐹 =  𝑥 +  𝑦 𝑧 𝑎𝑠 𝑎 𝑠𝑢𝑚 𝑜𝑓 𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠. 

 
Solution:   

This function has three variables: 𝑥,𝑦,𝑎𝑛𝑑 𝑧. Therefore All terms must have these three 

variables. Thus, we need to expand the first term by ANDing it with (𝑦 +  𝑦′)(𝑧 +  𝑧′), and 

we expand the second term with (𝑥 +  𝑥′) to get 

𝐹 =  𝑥 +  𝑦 𝑧 =  𝑥 (𝑦 +  𝑦′) (𝑧 +  𝑧′)  +  (𝑥 +  𝑥′) 𝑦 𝑧 

=  𝑥 𝑦 𝑧 +  𝑥 𝑦 𝑧′ +  𝑥 𝑦′ 𝑧 +  𝑥 𝑦′ 𝑧′ +  𝑥 𝑦 𝑧 +  𝑥′ 𝑦 𝑧 

=  𝑥′ 𝑦 𝑧 +  𝑥 𝑦′ 𝑧′ +  𝑥 𝑦′ 𝑧 +  𝑥 𝑦 𝑧′ +  𝑥 𝑦 𝑧 

=  𝑚3 +  𝑚4 +  𝑚5 +  𝑚6 +  𝑚7 

=  𝛴(3, 4, 5, 6, 7) 

 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥 𝑦 𝑧 𝑀𝑖𝑛𝑡𝑒𝑟𝑚𝑠 𝐹 

0 0 0 𝑚0 = 𝑥′ 𝑦′ 𝑧′ 0 

0 0 1 𝑚1 = 𝑥′ 𝑦′ 𝑧 0 

0 1 0 𝑚2 = 𝑥′ 𝑦 𝑧' 0 

0 1 1 𝑚3 = 𝑥′ 𝑦 𝑧 1 

1 0 0 𝑚4 = 𝑥 𝑦′ 𝑧′ 1 

1 0 1 𝑚5 = 𝑥 𝑦′ 𝑧 1 

1 1 0 𝑚6 = 𝑥 𝑦 𝑧′ 1 

1 1 1 𝑚7 = 𝑥 𝑦 𝑧 1 



 

36 
 

2.  Suppose a function 𝐹 is defined by the following truth table, then convert it into the  

sum of minterms 

 
Solution: 
                            Given Truth Table 
 

 

 

 

 

 

 

Since 𝐹 = 1 on rows 1, 2, 4, and 7, we obtain 

𝐹 =  𝑚1 + 𝑚2 + 𝑚4 + 𝑚7 

= 𝐴 𝐵 𝐶 + 𝐴 𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 

A compact notation is to write only the numbers of the minterms included in 𝐹, using the 

Greek letter capital sigma to indicate a sum: 

 𝐹 =  ∑(1,2,4,7) 

This form can be written down immediately by inspection of the truth table. 

 

2.7 Maxterms: 

A maxterm, denoted as 𝑀𝑖 ,𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑖 < 2𝑛 , is a sum (OR) of the 𝑛variables 

(literals) in which each variable is complemented if thevalue assigned to it is 1, and 

uncomplemented if it is 0. 

1-maxterms = maxterms for which the function F = 1. 

0-maxterms= maxterms for which the function F = 0. 

Any Boolean function can be expressed as a product (AND) of its 0-maxterms.  

A shorthand notation: 

𝐹(𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)  =  ∏(𝑙𝑖𝑠𝑡 𝑜𝑓 0 −𝑚𝑎𝑥𝑡𝑒𝑟𝑚 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) 

 

𝐴 𝐵 𝐶 m.t 𝐹 

0 0 0 𝑚0 0 

0 0 1 𝑚1 1 

0 1 0 𝑚2 1 

0 1 1 𝑚3 0 

1 0 0 𝑚4 1 

1 0 1 𝑚5 0 

1 1 0 𝑚6 0 

1 1 1 𝑚7 1 



 

37 
 

 

 

 

 

 

 

 

 

Example:                    

 𝐹 =  (𝑥 + 𝑦 + 𝑧)  ⋅  (𝑥 + 𝑦 + 𝑧′)  ⋅  (𝑥 + 𝑦′ + 𝑧)  ⋅ (𝑥′ + 𝑦 + 𝑧) 

=  𝑀0  ⋅  𝑀1  ⋅  𝑀2  ⋅  𝑀4  

𝑜𝑟 

𝐹 (𝑥,𝑦, 𝑧)  =  ∏(0, 1, 2, 4) 

 

The inverse of the function can be expressed as a product (AND) of its 1-maxterms.  

 

A shorthand notation: 

𝐹(𝑙𝑖𝑠𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠)  =  ∏(𝑙𝑖𝑠𝑡 𝑜𝑓 1 −𝑚𝑎𝑥𝑡𝑒𝑟𝑚 𝑖𝑛𝑑𝑖𝑐𝑒𝑠) 

 

Example: 

 𝐹 ′ =  (𝑥 + 𝑦′ + 𝑧′)  ⋅  (𝑥′ + 𝑦 + 𝑧′)  ⋅  (𝑥′ + 𝑦′ + 𝑧)  ⋅  (𝑥′ + 𝑦′ + 𝑧′) 

=  𝑀3  ⋅  𝑀5  ⋅  𝑀 6 ⋅  𝑀7 

𝑜𝑟 

𝐹 ′ (𝑥,𝑦, 𝑧)  =  ∏(3, 5, 6, 7) 

 

 

 

 

 

 

𝑥 𝑦 𝑧 𝑀𝑎𝑥𝑡𝑒𝑟𝑚𝑠 𝐹 𝐹′ 

0 0 0 𝑀0 = 𝑥 +  𝑦 +  𝑧 0 1 

0 0 1 𝑀1 = 𝑥 +  𝑦 + 𝑧′ 0 1 

0 1 0 𝑀2 = 𝑥 +  𝑦′ +  𝑧 0 1 

0 1 1 𝑀3 = 𝑥 + 𝑦′ +  𝑧′ 1 0 

1 0 0 𝑀4 = 𝑥′ +  𝑦 + 𝑧 0 1 

1 0 1 𝑀5 = 𝑥′ +  𝑦 +  𝑧′ 1 0 

1 1 0 𝑀6 = 𝑥′ +  𝑦′ +  𝑧 1 0 

1 1 1 𝑀7 = 𝑥′ +  𝑦′ +  𝑧′ 1 0 



 

38 
 

Problem: 

1. Express the Boolean function 𝐹 =  𝑥𝑦 + 𝑥’𝑧 in a product of maxterm form 

Solution:   

Convert the function into OR terms using the distributive law. 

𝐹 =  𝑥𝑦 + 𝑥’𝑧 

=  𝑥𝑦 + 𝑥′  𝑥𝑦 + 𝑧  

=  𝑥 + 𝑥′  𝑦 + 𝑥′  𝑥 + 𝑧  𝑦 + 𝑧  

=  𝑦 + 𝑥′  𝑥 + 𝑧  𝑦 + 𝑧  

The function has three variables  𝑥,𝑦 𝑎𝑛𝑑 𝑧. In each OR term one variable is missing 

𝑥′ + 𝑦 = 𝑥′ + 𝑦 + 𝑧𝑧′ =  𝑥′ + 𝑦 + 𝑧  𝑥′ + 𝑦 + 𝑧′  

𝑥 + 𝑧 = 𝑥 + 𝑧 + 𝑦𝑦′ =  𝑥 + 𝑧 + 𝑦  𝑥 + 𝑧 + 𝑦′  

𝑦 + 𝑧 = 𝑦 + 𝑧 + 𝑥𝑥′ = (𝑦 + 𝑧 + 𝑥)(𝑦 + 𝑧 + 𝑥′) 

Combining all terms and remove the terms that appear more than once, we get 

𝐹 =  𝑥′ + 𝑦 + 𝑧  𝑥′ + 𝑦 + 𝑧′  𝑥 + 𝑧 + 𝑦  𝑥 + 𝑧 + 𝑦′  

𝐹 =  𝑥 + 𝑦 + 𝑧  𝑥 + 𝑦′ + 𝑧  𝑥′ + 𝑦 + 𝑧  𝑥′ + 𝑦 + 𝑧′  

𝐹 = 𝑀0𝑀2𝑀4𝑀5 

𝐹 𝑥,𝑦, 𝑧 = ∏(0,2,4,5) 

 

2. Find the product of maxterms if 𝐹(𝐴,𝐵,𝐶) = ∑(1,4,5,6) 

Solution: 

For      𝐹(𝐴,𝐵,𝐶) = ∑(1,4,5,6),         

the complement is    𝐹′ 𝐴,𝐵,𝐶 = ∑ 0,2,3 = 𝑚0 + 𝑚2 + 𝑚3 

Applying DeMorgan’s theorem 

𝐹′  𝐴,𝐵,𝐶 = 𝑚0 + 𝑚2 + 𝑚3                    

= 𝑚0    ⋅  𝑚2    ⋅  𝑚3     

= 𝑀0 ⋅ 𝑀2 ⋅ 𝑀3 

𝐹(𝐴,𝐵,𝐶) = ∏(0,2,3) 

 



 

39 
 

2.8 Canonical form : 

Definition: 

Any Boolean function that is expressed as a sum of minterms or as a product of 

maxterms is said to be in its canonical form. 

To convert from one canonical form to its other equivalentform, interchange the 

symbols ∑ 𝑎𝑛𝑑 ∏, and list the index numbers that were excluded from the original form. 

To convert from one canonical form to its dual, interchange the symbols Σ and Π, 

and list the index numbers from the original form, or use De Morgan’s Law or the duality 

principle. 

 

Example: 

 

𝐹 =  𝑚3  + 𝑚5  + 𝑚 6 + 𝑚 7 =  𝛴(3, 5, 6, 7) 

=  𝑥′ 𝑦 𝑧 +  𝑥 𝑦′ 𝑧 +  𝑥 𝑦 𝑧′ +  𝑥 𝑦 𝑧 

 

=  𝑀0 ⋅  𝑀1  ⋅  𝑀 2 ⋅  𝑀4  =  ∏ 0, 1, 2, 4  

=   𝑥 + 𝑦 + 𝑧 ⋅  𝑥 + 𝑦 + 𝑧′ ⋅  𝑥 + 𝑦′ + 𝑧 ⋅  𝑥 ′ + 𝑦 + 𝑧  
 
 

𝐹 ′ =  𝑚0  +  𝑚1  +  𝑚2  +  𝑚 4 =  𝛴(0, 1, 2, 4) 

=  𝑥′ 𝑦′ 𝑧′ +  𝑥′ 𝑦′ 𝑧 +  𝑥′ 𝑦 𝑧′ +  𝑥 𝑦′ 𝑧′ 

 

=  𝑀3  ⋅  𝑀5  ⋅  𝑀6  ⋅  𝑀7  =  ∏(3, 5, 6, 7) 

=  (𝑥 + 𝑦′ + 𝑧′) ⋅ (𝑥′ + 𝑦 + 𝑧′) ⋅ (𝑥′ + 𝑦′ + 𝑧) ⋅ (𝑥′ + 𝑦′ + 𝑧′) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 1 −𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

 0 −𝑚𝑎𝑥𝑡𝑒𝑟𝑚𝑠 

 0 −𝑚𝑖𝑛𝑡𝑒𝑟𝑚𝑠 

 0 −𝑚𝑎𝑥𝑡𝑒𝑟𝑚𝑠 

Inverse Duals 

Equivalent 

Equivalent 



 

40 
 

2.9 Karnaugh-map or K-map: 

The Boolean theorems and the De-Morgan's theorems are useful in manipulating 

the logic expression. We can realize the logical expression using gates. The number of logic 

gates required for the realization of a logical expression should be reduced to a minimum 

possible value. One of the methods used to minimize the logical expression is K-map 

method. A Karnaugh map provides a pictorial method of grouping together expressions 

with common factors and therefore eliminating unwanted variables. The Karnaugh map 

can also be described as a special arrangement of a truth table. 

The K-map is a graphical device used to simplify a logical equation or to convert a 

truth table to its corresponding logic circuit in a simple, logical method. It is also known as 

Veitch diagram. A K-map is a diagram made up of squares and may be considered to be the 

graphic representation of the minterm canonical form. Each minterm is represented by a 

cell, and the cells are assembled in an orderly arrangement such that adjacent cell represent 

minterms which differ by one variable. The number of cells in a K-map depends upon the 

number of variables in the Boolean expression. Two variables map contain four cells, three 

variables map contain eight cells and n variables map contain 2n cells. Each row and column 

of the map is assigned by 0’s and 1’s as shown in figure. 

 

 

 

 

 

This method can be done in two different ways, as discussed below. 

2.9.1 Sum of Products (SOP) Form 

It is in the form of sum of three terms AB, AC, BC with each individual term is a 

product of two variables. Say A.B or A.C or B.C. Therefore such expressions are known as 

expression in SOP form. The sum and products in SOP form are not the actual additions or 

multiplications. In fact they are the OR and AND functions. In SOP form, 0 represents a bar 

and 1 represents an unbar. SOP form is represented by ∑. 

0 

A 
B 

0 1 

0 

1 

1 

3 2 

00 01 

11 10 

Two Variables K-map 
With cell number 
 

A 
0 1 2 3 

6 7 5 4 

000 001 011 010 

100 101 111 110 

BC 

0 

00 01 11 10 

1 

Three Variables K-map 
with cell number 

 



 

41 
 

Boolean expression in SOP may or may not be in a standard form. First the 

expression is converted into SOP and then, 1’s are marked in each cell corresponding to the 

minterm of expression and the remaining cells are marked with 0’s. 

Examples of SOP: 

1. K-map for the Boolean expression 𝑌 𝐴,𝐵,𝐶 = 𝐴 + 𝐵 

 

 
 

 

 

 

 

 

 

 

 

 

2. K-map for the Boolean expression 𝑌 𝐴,𝐵,𝐶 = 𝐴𝐵 + 𝐵𝐶 + 𝐴 𝐵 𝐶 

 

 

 

 

 

 

 

 

 

 

 

2.9.2 Product of Sums (POS) Form 

It is in the form of product of three terms (A+B), (B+C), or (A+C) with each term is in 

the form of a sum of two variables. Such expressions are said to be in the product of sums 

(POS) form. In POS form, 0 represents an unbar and 1 represents a bar. POS form is 

represented by ∏ 

In SOP form  𝐴 𝐵 + 𝐴 𝐵 + 𝐴𝐵 
   ↓ ↓      ↓ ↓      ↓ ↓ 

  0 0     0 1     1 1 

 

 𝑚 0,1,3  

 
 

 

Result of   𝐴 𝐵 + 𝐴 𝐵 + 𝐴𝐵 is 𝐴 + 𝐵 

In SOP form  𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶 + 𝐴 𝐵 𝐶 
      ↓ ↓ ↓      ↓ ↓ ↓      ↓ ↓ ↓      ↓ ↓ ↓ 

     1 11      11 0      01 0     0 0 1 

 

 𝑚 1,2,6,7  

 
 
 

 
 

Result of   𝐴𝐵𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶 + 𝐴 𝐵 𝐶 is 𝐴𝐵 + 𝐵𝐶 + 𝐴 𝐵 𝐶 

A 

m0 m1 m2 m3 

m6 m7 m5 m4 
  

BC 

0 

00 01 11 10 

1 

1 1 

1 1 

m0 

A 
B 

0 1 

0 

1 

m1 

m3 m2 

1 1 

1 0 



 

42 
 

 

Example of POS: 

 

 

 

 

 

 

 

 

 

2.10 Grouping the adjacent cells of Karnaugh map: 

Adjacent cells:If two occupied cells of a Karnaugh are adjacent, horizontally or vertically (but 

not diagonally) then one variable is redundant. This has resulted by labeling the map as 

shown,  

 

 

 

 

 

Consider the above map. The function plotted is 𝑌 = 𝑓 𝐴𝐵 = 𝐴 𝐵 + 𝐴𝐵 Using algebraic 

simplification, 𝑌 = 𝐵  𝐴 + 𝐴 = 𝐵  by using the Boolean law(𝐴 + 𝐴 = 1). Referring to the 

map we can encircle the adjacent cells and assume that 𝐴 𝑎𝑛𝑑 𝐴   are not required.   

i.e. adjacent cells satisfy the condition𝐴 +  𝐴  =  1. 

The Karnaugh map uses the following rules for the simplification of expressions by 

grouping together adjacent cells containing ones 

 

In POS form  (𝐵 + 𝐶 ) 𝐴 + 𝐵  (𝐵 + 𝐶) 
    ↓       ↓     ↓      ↓     ↓      ↓ 

   0      1     1      1     1     0 

 

 𝑚 1,3,2  

 
 

 
 
 
 

Result of  (𝐵 + 𝐶 ) 𝐴 + 𝐵  (𝐵 + 𝐶) is (𝐴 + 𝐶 )(𝐴 + 𝐵 ) 

A 

m0 m1 m2 m3 

m6 m7 m5 m4 

0 0 0 

  

BC 

0 

00 01 11 10 

1 

0 

B 
A 

0 1 

0 

1 

1 

3 2 

1 1 

  



 

43 
 

2.11 Rules for grouping cells in K-map: 

1. Groups may not include any cell containing a zero 

2. Groups may be horizontal or vertical, but not diagonal. 

3. Groups must contain 1, 2, 4, 8, or in general 2n cells. That is if n = 1, a group will 

contain two 1's  since 21 = 2. If n = 2,  a group will contain four 1's since 22 = 4. 

4. Each group should be as large as possible. 

5. Each cell containing a one must be in at least one group. 

6. Groups may overlap. 

7. Groups may wrap around the table. The leftmost cell in a row may be grouped with 

the rightmost cell and the top cell in a column may be grouped with the bottom cell. 

8. There should be as few groups as possible, as long as this does not contradict any of 

the previous rules. 

 

2.12 Examples for the above said rules: 

In the following examples the grouping of cells in correct method is indicated as 

“RIGHT with a tick mark”. For more understanding, the improper grouping is alsoindicated 

about the respective rule as “Wrong with a cross mark”. 

 

For Rule 1: 

 

 

 

 

 

 

 

 

 

 

 

 



 

44 
 

For Rule 2: 

 

 

 

 

 

 

 

For Rule 3: 

 

 

 

 

 

 

 

 

 

 

 

 

For Rule 4: 

 

 

 

 

 

 

 

 

0 1 

0 

1 

A 
B 

0 1 

1 1 

0 1 

0 

1 

A 
B 

0 1 

1 0 

RIGHT Wrong 



 

45 
 

For Rule 5: 

 

 

 

 

 

 

For Rule 6: 

 

 

 

 

 

 

 

 

 

 

For Rule 7: 

 

 

 

 

 

 

 

 



 

46 
 

For Rule 8: 

 

 

 

 

 

 

 

2.13Simplifying Boolean Expression using K Map 

2.13.1 Minterm Solution of K Map:  

The following are the steps to obtain simplified minterm solution using K-map. 

Step 1: Initiate 

Express the given expression in its canonical form  

Step 2: Populate the K-map 

Enter the value of 'one' for each product-term into the K-map cell, while filling others 

with zeros.  

Step 3: Form Groups 

Using the rules of grouping of cells form as many as possible larger groups 

Step 4: Obtain Boolean Expression for Each Group 

Express each group interms of input variables by looking at the common variables 

seenin cell-labeling.  

For example in the figure shown below there are two groups with two and one number of 

'ones' in them (Group 1 and Group 2, respectively). All the 'ones' in the Group 1 of the          

K-map are present in the row for which A = 0. Thus they contain the variable A̅ . Further 

these two 'ones' are present in adjacent columns which have only B term in common as 

indicated by the double headed arrow in the figure. 

 



 

47 
 

 

 

 

 

 

Hence the next term is B. This yields the product term corresponding to this group as 

A̅B. Similarly the 'one' in the Group 2 of the K -map is present in the row for which A = 1. 

Further the variables corresponding to its column are B̅C.̅ Thus one gets the overall product-

term for this group as AB̅C.̅  

Step 5: Obtain Boolean Expression for the Output 

The product-terms obtained for individual groups are to be combined to form sum-

of-product (SOP) form which yields the overall simplified Boolean expression. This means 

that for the K-map shown in Step 4, the overall simplified output expression is 𝐴 + 𝐴𝐵 𝐶  

 

2.13.2 Maxterm Solution of K Map 

The method to be followed in order to obtain simplified maxterm solution using K-map 

is similar to that for minterm solution except minor changes listed below.  

1. K-map cells are to be populated by 'zeros' for each sum-term of the expression instead 

of 'ones'. 

2. Grouping is to be carried-on for 'zeros' and not for 'ones'. 

3. Boolean expressions for each group are to be expressed as sum-terms and not as 

product-terms. 

4. Sum-terms of all individual groups are to be combined to obtain the overall simplified 

Boolean expression in product-of-sums (POS) form. 

Example:    𝑌 =  𝐴 + 𝐵 + 𝐶  +  𝐴 + 𝐵 + 𝐶  +  𝐴 + 𝐵 + 𝐶 + (𝐴 + 𝐵 + 𝐶 ) 
 

 

Simplified Expression is  𝑌 = (𝐴 + 𝐶 )(𝐴 + 𝐵 ) 



 

48 
 

Problems: 

1. Draw Karnaugh map for the Boolean expression 𝑌 = 𝐴 𝐵 + 𝐴𝐵 + 𝐴 𝐵:  

 

 

𝑌 = 𝐴 + 𝐵  

 

 

Pairs of 1's are grouped as shown above, and the simplified answer is obtained by using the 

following steps: Two groups can be formed that the largest rectangular bands that can 

bemadeconsistoftwo1s. 

The first group: 

The first group labeledI, consists of two 1s which correspond to A = 0, B = 0 and A = 1, B = 0. 

(or) all squares that correspond to the area of the map where B = 0 contains 1s, 

independent of the value of A. So when B = 0 the output is 1. The expression of the output 

will contain the term 𝐵  

The second group: 

The group labeledII corresponds to the area of the map where A = 0. The group can 

therefore be defined as𝐴 . This implies that when A = 0 contains 1s, independent of the value 

of B.So when A = 0 the output is 1. The expression of the output is 𝐴  

Hence the simplified answer is 𝑌 = 𝐴 + 𝐵  

2. Draw K-map for the Expression 𝑌 = 𝐴 𝐵 𝐶  + 𝐴  𝐵 +  𝐴𝐵𝐶  +  𝐴𝐶 

 

𝑌 = 𝐵 +  𝐴𝐶 + 𝐴 𝐶   

 

 

By using the rules of simplification and ringing of adjacent cells in order to make as many 

variables dismissed, the minimised result obtained is  𝑌 = 𝐵 +  𝐴𝐶 + 𝐴 𝐶   



 

49 
 

3. Draw k-map for the expression𝑌 =  𝐴 𝐵 +  𝐵𝐶  +  𝐵𝐶 +  𝐴𝐵 𝐶  

   

 

𝑌 = 𝐵 +  𝐴𝐶  

 

By using the rules of simplification and ringing of adjacent cells in order to make as many 

variables redundant, the minimised result obtained is 𝑌 = 𝐵 +  𝐴𝐶  

4. Minimize the following expressions using K-map 

 

(i) 𝑌 𝐴,𝐵,𝐶 = ∑𝑚 1,3,5,7  

(ii) 𝑌 𝐴,𝐵,𝐶 = ∑𝑚 0,1,4,5  

(iii) 𝑌 𝐴,𝐵,𝐶 = ∑𝑚 0,2,4,6  

 

Solution:  

(i) 𝑌 𝐴,𝐵,𝐶 = ∑𝑚 1,3,5,7  

 
 

 

 

 

𝑌 𝐴,𝐵,𝐶 = 𝐶 

 

(ii) 𝑌 𝐴,𝐵,𝐶 = ∑𝑚 0,1,4,5  

 

 

 

 

 

𝑌 𝐴,𝐵,𝐶 = 𝐵  

A 

0 1 2 3 

6 7 5 4 

0    1   1 0 

0    1    1 0 

BC 

0 

00 01 11 10 

1 

A 
0 1 2 3 

6 7 5 4 

   1    1 0    0 

   1    1    0    0 

BC 

0 

00 01 11 10 

1 



 

50 
 

 

(iii) 𝑌(𝐴,𝐵,𝐶) = ∑𝑚(0,2,4,6)  

 

 

 

 

𝑌 𝐴,𝐵,𝐶 = 𝐶  

 

5. Simplify the expression using K-map   𝑌 𝐴,𝐵,𝐶 = ∑𝑚(0,1,2,3,4,5,6,7) 

 

 

 

 

𝑌 𝐴,𝐵,𝐶 = 1 

 

6. Minimize the following expressions using K-map 
 

(i) 𝑌 𝐴,𝐵,𝐶 = ∏𝑀 1,3,5,7  

(ii) 𝑌 𝐴,𝐵,𝐶 = ∏𝑀 0,1,4,5  

(iii) 𝑌 𝐴,𝐵,𝐶 = ∏𝑀 0,2,4,6  

 

Solution: 

(i) 𝑌 𝐴,𝐵,𝐶 = ∏𝑀 1,3,5,7  

 

 

 

 

 

 𝑌 𝐴,𝐵,𝐶 = 𝐶  

 

 

A 
0 1 2 3 

6 7 5 4 

   1    0    0    1 

   1     0    0    1 

BC 

0 

00 01 11 10 

1 

A 

0 1 2 3 

6 7 5 4 

   1    1    1    1 

   1    1    1    1 

BC 

0 

00 01 11 10 

1 

A 

0 1 2 3 

6 7 5 4 

1    0 0 1 

1     0 0 1 

BC 

0 

00 01 11 10 

1 



 

51 
 

(ii) 𝑌 𝐴,𝐵,𝐶 = ∏𝑀 1,3,5,7  

 

 

 

 

 𝑌 𝐴,𝐵,𝐶 = 𝐵 

 

(iii) 𝑌 𝐴,𝐵,𝐶 = ∏𝑀 0,2,4,6  

 

 

 

 

 𝑌 𝐴,𝐵,𝐶 = 𝐶 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A 
0 1 2 3 

6 7 5 4 

0 0 1 1 

0 0 1 1 

BC 

0 

00 01 11 10 

1 

A 

0 1 2 3 

6 7 5 4 

0 1 1 0 

0 1 1 0 

BC 

0 

00 01 11 10 

1 



 

52 
 

Unit III Basic Logic Gates 

AND, OR, NOT (symbol, truth table, circuit diagram, working) – NAND, NOR, EX-OR,            

EX-NOR(symbol, truth table) 

 

3.1 Logic Gate:   

A logic gate is an elementary building block from which all digital electronic circuits and 

microprocessor based systems are constructed.  

 

 

 

 

In digital logic design only two voltage levels or states are allowed and these states 

are generally referred to as Logic “1” and Logic “0”, High and Low, or True and False. These 

two states are represented in Boolean algebra and standard truth tables by the binary digits 

of “1” and “0” respectively. Most logic gates have two inputs and one output. At any given 

moment, every terminal is in one of the two binary conditions low (0) or high (1), 

represented by different voltage levels. A good example of a digital state is a simple light 

switch as it is either “ON” or “OFF” but not both at the same time 

 It is an electronic circuit having one or more than one input and only one 

output. The relationship between the input and the output is based on certain logic. Based 

on this, logic gates are named as AND gate, OR gate, NOT gate etc. The relationship 

between the various digital states is given in table 3.1 as 

Table 3.1: Digital States 

 

 

 

 

 

 

Boolean 
Algebra 

Boolean 
Logic 

Voltage  
State 

Logic 
“1” 

True (T) High 
(H) 

Logic 
“0” 

False 
(F) 

Low (L) 

Figure 3.1 Block Diagram of Logic Gate 



 

53 
 

The digital logicgates and digital logic systems use “Positive logic”, in which a logic 

level “0” or “LOW” is represented by a zero voltage, 0v or ground and a logic level “1” or 

“HIGH” is represented by a higher voltage such as +5 volts, with the switching from one 

voltage level to the other, from either a logic level “0” to “1” or “1” to “0” being made as 

quickly as possible to prevent any faulty operation of the logic circuit.  

There also exists a complementary “Negative Logic” system in which the values and 

the rules of  a logic “0” and a logic “1” are reversed. 

  Ideal Digital Logic Gate Voltage Levels is shown in figure 3.2 
 

 

 

 

 

 

 

 

 

 

 

 

Where the opening or closing of the switch produces either a logic level “1” or a logic level 

“0” with the resistor R being known as a “pull-up” resistor. 

3.2 OR gate: 

OR gate performs logical OR(addition) operation which means outputs is logical 1 if at least 

one of the inputs is 1. An OR gate has two or any more numbers of inputs but only one 

output. Only if all of the inputs are only in low state or logical 0 the output is low or 0 and in 

all other inputs conditions the output will be high or logical 1. 

 

 

0v LOW 
Logic ‘0’ 

 

+5v HIGH 
Logic ‘1’ 

 
1 

0V 

+5V 

0 

0V LOW 

Logic’0’ 

 

+5V +5V 

R R 

+5V HIGH 

Logic’1’ 

 Switch 
Open 

 

Switch 
Closed 

 
     0V 
(Ground) 
’ 

 Figure 3.2: Digital Logic Gate Voltage Level 



 

54 
 

The logical symbol of two input OR gate is  

 

 

 

  

The logical expression is   𝑋 = 𝐴 + 𝐵 

From above explanation the truth table of logical OR gate can be represented in table 3.2 as, 

Table 3.2 Truth Table of OR Gate 
 

 

 

 

 

3.2.1 Diode OR Gate 

A simple two inputs OR gate can be realized by using diode as shown in figure 3.4  

 

 

 

 

 

 

In the above circuit (figure 3.4), if A and B are applied with 0V, there will be no 

voltage appears at X.  

When any of the inputs is given with +5V, (figure 3.5) the respective diode becomes 

forward biased and behaves as ideally short circuited hence this +5 V will appear at output 

X. +5 V means logical 1. Actually entire 5V will not appear at X, around 0.6 to 0.7 V will drop 

across the diode as forward bias voltage and rest of the voltage i.e. 5 – 0.6 = +4.4 V or                        

5 – 0.7 = +4.3 V will appear at X. This 4.4 V or 4.3 V is practically considered as logical 1.  

 

 

 

Inputs Output 

A B 𝑋 = 𝐴 + 𝐵 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Figure 3.3: Logical Symbol of OR Gate 

Figure 3.4: Diode OR Gate 



 

55 
 

 

 

 

 

  

 

 

If both of the inputs are given with +5 V, both diodes will be forward biased (figure 3.6). 

Hence, similarly 4.4 V will appear at X.  

 

 

 

 

 

 

If both of the inputs A and B are grounded or given 0V, there will be no voltage appears at X 

and hence X is considered as logical 0.  

 

3.2.2 Transistor OR Gate 

The OR gate can also be realized by using transistor. In this case the OR gate is 

referred as transistor OR gate. Two inputs such OR gate is shown in figure 3.7 

 

 

 

 

 

 

 

 

Figure 3.5: Diode OR Gate with any one input is +5v 

Figure 3.6: Diode OR Gate with both inputs are +5v 

Figure 3.7: Transistor OR Gate 



 

56 
 

Now if A and B both are given with 0V, both of the transistor are in OFF condition, 

hence supply voltage + 5 V will not get path to the ground through either of the transistors, 

T1 and T2. As a result base of the transistor T3 will get enough potential to make it ON. In 

that condition supply + 5 V will get path to the transistor T3 is in ON condition it will behaves 

as ideally short circuited, hence entire supply voltage + 5 V will drop across resistor Rʹ and X 

terminal (Node) will get 0V. In practice, transistor T3 will not be ideal short circuited it will 

have some voltage drop across it which will be around 0.6 – 0.7 V. This voltage will appear at 

node X and this 0.6 or 0.7 volt is considered as logical 0. Now, if base terminal either of the 

transistors T1 or T2 or both are given with + 5 V, the respective transistor as both will be in 

ON condition. In that case supply voltage + 5 V will get path to ground through either of the 

transistors or both. As a result current starts flowing to the ground from supply through this 

path, and entire supply voltage will drop across resistor R. So, the base of transistor T3 will 

not get sufficient potential to make the transistor T3 ON. Hence entire supply voltage will 

appear at X and the X becomes at high logical state or logical 1. 

3.3 AND Gate 

AND Gate is a logical gate which is widely used having two or more inputs and a 

single output. This gate works or operates on logical multiplication rules. In AND gate if 

either of the inputs is low (0), then the output is also low, but if all the inputs are high (1) 

the output will also be high (1). An AND gate performs multiplication operation of binary 

digits 1 and 0. In multiplying 0 with 0 we will get 0, 1 with 0 or 0 with 1, we will get 0. We get 

1 only when 1 is multiplied by 1. 

In other words, an AND gate is a digital device which produces high output only 

when all inputs are high and produces low output at all other inputs conditions. High digital 

signal means logically 1 and low digital signal means logically 0. An AND gate may have any 

number of input probes but only one output probe. 

A two input AND gate is logically represented in figure 3.8 as  

 

 

 

 

 
Figure 3.8: Logical Symbol of AND Gate 



 

57 
 

Where A and B represent inputs and X represents the output of the gate. A, B and X either 

be 1 or 0 logically. The logical Expression of AND gate hence can be represented as 

𝑋 = 𝐴 ∙ 𝐵All multiplication combination of A and B can be represented in tabular form 

(table 3.3) and is known as truth table. 

Table 3.3 Truth Table of AND Gate 

 

 

 

 

3.3.1 Diode AND Gate 

Normally an AND gate is designed by either diodes or transistors. While, diodes are used to 

design AND gate, it is called diode AND gate. The basic circuit of a diode AND gate is shown 

in figure 3.9 

 

 

 

 

 In the above circuit (figure 3.9) we first apply +5V at C. Now if we apply +5V at A 

and B, both of the diodes are reversed biased (figure 3.10) and hence behave both diodes as 

OFF or open circuit. At this situation as both diodes are OFF, no current will flow through 

resistor R and voltage of C (+5V) will also appears at X. As the supply voltage +5V appears at 

X, the output of the circuit is considered as high or logical 1.  

 

 

 

 

Inputs Output 
A B 𝑋 = 𝐴 ∙ 𝐵 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

(Logical 1) 

Figure 3.9: Diode AND Gate 

Figure 3.10: Diode AND Gate with both input +5v 



 

58 
 

Now, if either point A or B or both are applied with 0 Volt or they are grounded, respective 

diode will become forward biased (figure 3.11) and hence behaves as ‘ON’ or short 

circuited. At this condition, supply voltage +5V at point C will get path through either of 

diodes or both to the ground potential. As the current flowing from C to ground through 

resistor R, entire 5V will be dropped across the resistor and hence voltage at X will become 

low or logically zero.  

 

 

The diodes at forward biased condition do not behave as ideal short circuit; some voltage 

drop will be there across the forward biased diodes which are equal to forward bias voltage. 

This voltage drop will appear at X during low output condition, so practically low output will 

not be 0V it is rather 0.6 to 0.7V which is ideally considered as zero.  

3.3.2 Transistor AND Gate 

 An AND logic gate can also be realized from transistor AND gate. The circuit 

diagram of transistor logic gate is shown in figure 3.12.  

 

 

 

 

 

 

 

 

Figure 3.11: Diode AND Gate with any one input +5v 

Figure 3.12: Transistor AND Gate  



 

59 
 

 In the above circuit figure 3.12 when A or B or both A and B are grounded or at 0V 

potential transistor T1 or T2 or both T1 and T2 are in OFF condition respectively. This is 

because terminal A and B are base terminal of transistor T1 and T2 respectively. Zero base 

voltage makes a transistor OFF. As the path through T1and T2 is open circuited base of 

transistor T3gets enough potential to makes T3 ON. Current then starts flowing the supply to 

ground through T3. As a result entire supply voltage will drop across R’ and potential of 

terminal X will become low or logical zero. 

 If any of the transistors T1 and T2 is in OFF condition, same result will come at 

output X as both the transistors are in series. Now we will check what will be the logical 

value of X, if both A and B are at high logical value. If we apply +5V at both A and B i.e. at 

base of transistor T1 and T2 respectively. This makes both the transistor T1 and T2 are in ON 

condition. Enter supply voltage will drop across R and the base potential of the transistor T3 

will be zero and T3 becomes in OFF condition. As a result the supply voltage +5V appears at 

X and X will become logically 1 or high.  

3.4 NOT gate 

NOT gate is a logical gate which only inverts the input digital signal. Therefore a NOT gate 

sometimes is referred as inverter. A NOT gate always have high or logical 1 output when its 

input is low or logical 0. On the other hand a logical NOT gate always have low or logical 0 

output when input is high or logical 1.  

The logical symbol of a NOT gate is shown in figure 3.13  

 

 

If the input binary variable of a NOT gate is considered as A, then the output binary variable 

of the gate will be Ā. As the symbol of not operation is ( - ) bar. 

 

The logical Expression of a NOT gate is𝑋 =  𝐴  

 

 

 

 

X = A A 

Figure 3.13: Logical Symbol of NOT Gate 



 

60 
 

If the value of A is 1, then Ā = 0 and in opposite if the value of A is 0 then Ā = 1. The 

truthtable of a NOT gate hence can be represented as table 3.4,  

Table 3.4 Truth Table of NOT Gate 
 

 

A NOT gate can easily be realized by using a simple bipolar transistor. The circuit of a NOT 

gate or transistor inverter is shown in figure 3.14,  

 

 

 

 

 

 

Let us examine the above simple circuit (figure 3.14) by applying high input variable, 

i.e. +5V.At that condition the transistor T gets enough base potential to make the transistor 

T ‘ON’.As soon as the transistor becomes ON, the supply voltage (+5V) at B will get a path to 

the earth through the resistor R. At ON condition the transistor will behave short circuited 

ideally, hence entire supply voltage will drop across resistor R and no voltage will appear at 

X and hence the output of the inverter or NOT gate will be zero.  

In actual case, there will be some voltage drop across collector and emitter even at 

ON condition, of transistor. This collector-emitter voltage is about 0.6V. So, at the above 

said input condition, entire supply voltage +5V will not drop across resistor instead it will be 

5 – 0.6 = 4.4V. So, 0.6V is practically considered as logical zero or low.  

 

 

 

𝐴 𝑋 =  𝐴  
0 1 

1 0 

Figure 3.14: Transistor Circuit NOT Gate and with input +5v 



 

61 
 

Now let us examine the condition, Where, input A = 0V i.e. base terminal of the transistor is 

given with 0V or grounded (figure 3.15).  

 

 

 

 

 

 

 

 

 

At that condition, as the base of the transistor is at 0 potential, the transistor T will be in OFF 

condition and hence, the supply voltage will not get any path to the earth and entire supply 

voltage will appear at output terminal of the NOT gate high or logical 1, when input terminal 

A is low or logical zero. 

3.5 NAND gates 

 AND, NOT and OR gates are the basic gates; we can create any logic gate or any 

Boolean expression by combining them. Now NAND and NORgates have the particular 

property that any one of them can create any logical Boolean expression if designed in a 

proper way. Now we will look at the operation of each gate separately as universal gates. 

When output of an AND gate is inverted through a NOT gate, the operation is called NAND 

operation. The logic gate which performs this NAND operation is called NAND gate.  

ie.,ANOT gate followed by an AND gate makes a NAND gate.  

The basis logical construction of the NAND gate is shown in figure 3.16  

 

 

 

 

Figure 3.15: Transistor Circuit NOT Gate and with input 0v 

Figure 3.16: Logical Symbol of NAND Gate 



 

62 
 

The symbol of NAND gate is similar to AND gate but one bubble is drawn at the 

output point of the AND gate, in the case of NAND gate. NAND gate actually means “not 

AND gate” which means, the output of this gate is just reverse of that of a similar AND gate. 

We know that the output of the AND gate is only high or 1, when all the inputs are 

high or 1. In all other cases, the output of AND gate is low or 0. In the case NAND, the case is 

a just opposite, here, the output is only low or 0 when and only when all inputs of the gate 

are 1 and in all other cases, the output of NAND gate is high or 1. Hence, truth table of a 

NAND gate can be written like, Just reverse of the truth table of AND gate which is given in       

table 3.5  

Table 3.5 Truth Table of NAND Gate 
 

 

 

 

 

The logical Expression of NAND gate is 𝑋 = 𝐴 ∙ 𝐵       

Like AND gate a NAND gate can also be more than two inputs, like 3, 4, input NAND 

gate. An NAND gate is also referred as universal logic gate as all the binary operations can 

be realized by using only NAND gates. There are three basic binary operations, AND, OR and 

NOT. By these three basic operations, one can realize all complex binary operations. Now, 

we will show all these three binary operations can be realized by using only NAND gates. 

3.5.1 Realizing NOT Gate Using NAND Gate 

 

 

 

When, both inputs of a two inputs NAND gate are zero, the output is 1 and both 

inputs of the NAND gate are 1, the output is 0. Hence a NOT gate can very easily be realized 

Inputs Output 

A B 𝑋 = 𝐴 ∙ 𝐵       

0 0 1 

0 1 1 

1 0 1 

1 1 0 

Figure 3.17: NOT  Operation using NAND Gate 



 

63 
 

from NAND gate just by applying common inputs to the NAND gate. This is done by short 

circuiting all the inputs terminals of a NAND gate (figure 3.17). Where, x is either 1 or 0.  

3.5.2 Realizing AND Gate Using NAND Gate 

A NAND gate is a NOT gate followed by an AND gate, so if we can cancel the effect of 

NOT gate in a NAND gate it will become an AND gate. Hence, a NOT gate followed by a 

NAND gate realizes an AND gate. In this case we use the NOT gate which is realized from 

NAND gate and the logic circuit is shown in figure 3.18  

 

 

 

𝑋 = 𝐴 ∙ 𝐵 

3.5.3  Realizing OR Gate from NAND Gate 

From De Morgan Theorem we know, 𝑋 = 𝐴 .𝐵      = 𝐴 + 𝐵 = 𝐴 + 𝐵 

The above equation is a logical OR operation.  

 

 

 

 

The above logic equation can be represented by gates as shown in figure 3.19, where inputs 

first inverted then passed through a third NAND gate. The truth table of such circuit is given 

in table 3.6  

Table 3.6 Truth Table of OR by NAND Gates 

 

 

 

 

Inputs Output 

A B 𝑋 = 𝐴 ∙ 𝐵        =  𝐴 + 𝐵 

0 0 0 

0 1 1 

1 0 1 

1 1 1 

Figure 3.18: AND Operation using NAND Gate 

Figure 3.19: OR Operation using NAND Gate 



 

64 
 

Now, we have proved that all three basic binary operations can be realized by using only 

NAND gates. Hence, any other simple or complex binary operation must also be realized by 

using only NAND gates and hence it is justified to call an NAND gates as universal gates 

 
3.6 NOR Gate 
 

NOR gate is a result of combining NOT gate with an OR gate (figure 3.20). Thus its 

output is the negation of OR gate output which implies that it has high output only if all of 

its inputs are low. However for any other combination of inputs, the output will be low as 

shown by the truth table in table 3.7.  

. 

 
Table 3.7 Truth Table of NOR Gate 

 

 

 

 

 

Logical expression for NOR gate is 

𝑿 = 𝑨 + 𝑩        = 𝑨 𝑩  

 

3.6.1 NOR gate as universal gate 

 We have seen how NAND gate can be used to make all the three basic gates by 

using that alone. Now we will discuss the same in case of NOR gate 

 

 

.  

Inputs Output 

A B 𝑿 = 𝑨 + 𝑩         

0 0 1 

0 1 0 

1 0 0 

1 1 0 

Figure 3.20: Logical Symbol of NOR Gate 

Figure 3.21: OR Operation Using NOR Gate 



 

65 
 

The above diagram figure 3.21 is of an OR gate made by only using NOR gates. The output of 

this gate is exactly similar to that of a single OR gate. As we can see the circuit arrangement 

of OR gate using NOR gates is similar to that of AND gate using NAND gates. 

  

 

 

 

The above diagram figure 3.22 as the name suggests is of AND gate using only NOR gate, 

again we can see that the circuit diagram of AND gate using only NOR gate is exactly similar 

to that of OR gate using only NAND gates. Now we will finally see how a NOT gate can be 

made by using only NOR gates. 

 

 

The above diagram figure 3.23 is of a NOT gate made by using a NOR gate. The circuit 

diagram is similar to that of NOT gate made by using only NAND gate. So, from the above 

discussion it is clear that all the three basic gates (AND, OR, NOT) can be made by only using 

NOR gate. And thus, it can be aptly termed as Universal Gate. 

3.7 XOR gate 

Modulo sum of two variables in binary system is like this,  

 

 

 

The gate performs this modulo sum operation without including carry is known as X OR 

gate. An X OR gate is normally two inputs logic gate where, output is only logical 1 when 

only one input is logical 1. When both inputs are equal, that is either both are 1 or both are 

0, the output will be logical 0. This is the reason an XOR gate also called anti-coincidence 

Figure 3.22: AND Operation Using NOR Gate 

Figure 3.23: NOT Operation Using NOR Gate 



 

66 
 

gate or inequality detector. This gate is called as XOR or exclusive OR gate because, its 

output is only 1 when one of its input is exclusively 1.  

The truth table of XOR gate is given in table 3.8 

 

Table 3.8 Truth Table of XOR Gate 

 

 

 

 

The binary operation of above truth table is known as exclusive OR operation and it is 

represented as, A⊕ B. The symbol of exclusive OR operation is represented by a plus ring 

surrounded by a circle ⊕. 

3.7.1 Realization of Two Inputs XOR Gate 

The above expression, A⊕ B can be simplified as, 

Let us prove the above expression. In first case consider, A = 0 and B = 0.  

𝐴⨁𝐵 = 0⨁0 = 0. 0 + 0 . 0 = 0.1 + 1.0 = 0 

In second case consider, A = 0 and B = 1.  

𝐴⨁𝐵 = 0⨁1 = 0. 1 + 0 . 1 = 0.0 + 1.1 = 1 

In third case consider, A = 1 and B = 0.  

𝐴⨁𝐵 = 1⨁0 = 1. 0 + 1 . 0 = 1.1 + 0.0 = 1 

In fourth case consider, A = 1 and B = 1.  

𝐴⨁𝐵 = 1⨁1 = 1. 1 + 1 . 1 = 1.0 + 0.1 = 0 

 

So it is proved that, the Boolean expression for A ⊕ B is 𝐴𝐵  +  𝐴 𝐵, as this Boolean 

expression satisfied all output states respect to inputs conditions, of an XOR gate. From this 

Boolean expression one can easily realize the logical circuit of an XOR gate. 

 

 

 

Inputs Output 

A B 𝑋 = A ⊕  B 

0 0 0 

0 1 1 

1 0 1 

1 1 0 



 

67 
 

Logical Symbol of XOR Gate is shown in figure 3.24 

 

 

 

 

An XOR gate is logically represented in figure 3.25 as 

, 

 

 

 

 

3.8 XNOR Gate 

XNOR gate is a NOT gate followed by an XOR gate. As we know that XOR operation of 

inputs A and B is A⊕ B, therefore XNOR operation those inputs will be(𝐴 ⊕  𝐵           ). That 

means, output of XOR gate is inverted in XNOR gate. In XOR operation, the output is only 1 

when only one input is 1. The output is logical 0 when both inputs are same that means they 

are either 1 or 0. But in the case of XNOR gate, the output is 0 when only one input is 0 and 

the output is 1 when both inputs are same that is either both of them are 0 or 1.  

The truth table of the XNOR gate is given in table 3.9 

Table 3.9 Truth Table of XNOR Gate 

 

 

 

 

 

Inputs Output 

A B 𝑋 = A ⊙ B 

0 0 1 

0 1 0 

1 0 0 

1 1 1 

Figure 3.25  Logical Circuit diagram of XOR Gate 

Figure 3.24  LogicalSymbol of XOR Gate 



 

68 
 

The logical XNOR operation is represented by ⊙. That is a dot surrounded by circle. The 

expression of XNOR operation between variable A and B is represented as. Now again, the 

truth table is satisfied by the equation 

The logical expression is  

𝑋 = 𝐴𝐵 +  𝐴 𝐵  

 

The symbol of XNOR gate is shown in figure 3.26  

 

 

 

 

 

 

 

 

 

Hence, it is proved that A ⊙ B = 𝐴𝐵 +  𝐴 𝐵 . The same can be proved by using K-map also. 

The expression of XNOR operation can be realized by using two NOT gates, two AND 

gates and one OR gate is shown in figure 3.27  

 

 

 

 

 

 

 

 

Figure 3.26 Logical Symbol of XNOR Gate 

Figure 3.27  Logical Circuit diagram of XNOR Gate 



 

69 
 

Unit IV  Combinational Circuit 

Half adder- full adder- half subtractor- full subtractor- binary adder- BCD adder-decoder-
encoder-multiplexer-demultiplexer. 

 

Binary adder is one of the basic combinational logic circuits. The outputs of a 

combinational logic circuit depend on the present input only. In other words, outputs of 

combinational logic circuit do not depend upon any previously applied inputs. It does not 

require any memory like component. Binary adder is one of the basic combinational logic 

circuits as present state of input variables. 

4.1 Half Adder 

Before designing a binary adder, let us know some basic rules of binary addition. The 

most basic binary addition is addition of two single bit binary numbers that is addition of 

two binary digits. The binary digits are 0 and 1.Hence, there must be four possible 

combinations of binary addition of two binary bits  

 

 

 

In the above list, first three binary operations result in one bit but fourth one result in two 

bits. In one bit binary addition, if augend and addend are 1, the sum will have two digits. The 

higher significant bit (HSB) or Left side bit is called carry and the least significant bit (LSB) or 

right side bit of the result is called sum bit. The logical circuit performs this one bit binary 

addition is called half adder.  

4.1.1 Design of Half Adder 

For designing a half adder logic circuit, we first have to draw the truth table for two input 

variables i.e. the augend and addend bits, two outputs variables carry and sum bits. In first 

three binary additions, there is no carry hence the carry in these cases are considered as 0 

Table 4.1: Truth Table for Half Adder 

 

 

 

 

0 + 0 = 0 
0 + 1 = 1 
1 + 0 = 1 
1 + 1 = 10 

Inputs Outputs 

Augend(A) Addend(B) Carry(C) Sum(S) 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 



 

70 
 

 
4.1.2 K-map for Half Adder 

Now from this truth table we can draw K-map for carries and sums separately.  

 

 

 

 

 

For above K-maps we get,         𝐶𝑎𝑟𝑟𝑦 𝐶 = 𝐴𝐵   &  𝑆𝑢𝑚 𝑆 = 𝐴𝐵 + 𝐴 𝐵 

Although from truth table 4.1 it is clearly seen that carry (C) column signifies AND 

operation and sum (S) column signifies XOR operation between input variables but till we 

went through K-map as it is general practice to do so for more complex binary logic 

operations. Hence, the logical design of Half Adder would be as figure 4.1 

 

 

 

 

 

 

 

4.2 Full Adder 

Before knowing about full adder, let us know what is full addition? For that let us 

consider the example 

 

There, are two four bits binary numbers 1101 and 0111 which we have to add. The process 

of binary addition is like follows,  

1. We have to add first least significant bits (LSB) of both 4bits binary numbers first and  

 

 

this will result a two bits binary number. Here, LSB of 1101 and 0111 are 1,  

Hence 1 + 1 = 10. The LSB of 10 is 0 and higher significant bit (HSB) is 1. 

Figure 4.1: Half Adder Circuit 



 

71 
 

2. The LSB of the result is sum and to be put at the least significant position of the final 

result of the sum, and HSB of the two bits results will be carry and to be added with next 

higher significant bit of two 4bits augend and addend are 0 and 1 and the carry of 

previous result i.e. 1 to be added with 0 and 1.    0 + 1 + 1 = 10 

3. After this addition, that is next higher than least significant bit of bits of both binary 

augend and addend and it is previous carry we get another two bits result. This also has 

carry and sum. Here also we will write sum at final result and add the carry to the next 

higher significant bits of augend and addend. This will continue up to most significant bit 

of augend and addend. 

 

 

 

 

4.2.1Full Adder 

Full adder is a conditional circuit which performs full binary addition that means it 

adds two bits and a carry and outputs a sum bit and a carry bit. Any bit of augend can either 

be 1 or 0 and we can represent with variable A, similarly any bit of addend we represent 

with variable B. The carry after addition of same significant bit of augend and addend can 

represent by C. Hence truth table for all combinations of A, B and C is as follows,  

 

Table 4.2: Truth Table for Full Adder 

 

 

 

 

 

 

 

 

From the above table 4.2, we can draw K-map for sum (s) and final carry (Cout). Hence, from 

K-maps, the logical expression and logical diagram figure 4.2 is found as follow. 

Augend 
(A) 

Addend 
(B) 

Carry 
(C) 

Sum 
(S) 

𝐶𝑜𝑢𝑡  

Final 
Carry 

0 0 0 0 0 
0 0 1 1 0 
0 1 0 1 0 
0 1 1 0 1 
1 0 0 1 0 
1 0 1 0 1 
1 1 0 0 1 
1 1 1 1 1 



 

72 
 

 

 

Sum =  A𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶  

 
 
 
 
 
 
 

𝐶𝑜𝑢𝑡 = 𝐴𝐶 + 𝐵𝐶 + 𝐴𝐵 

 
 
 
 
 
 
 

 

𝑆 = 𝐴𝐵 𝐶 + 𝐴 𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴 𝐵𝐶  

𝑆 = 𝐶 𝐴𝐵 + 𝐴 𝐵  + 𝐶 (𝐴 𝐵 + 𝐴𝐵 ) 

𝑆 = 𝐶 𝐴 𝐵 + 𝐴𝐵              + 𝐶 (𝐴 𝐵 + 𝐴𝐵 ) 

𝑆 = 𝐶 𝐴⨁𝐵        + 𝐶  𝐴⨁𝐵 = 𝐴⨁𝐵⨁𝐶 

 

𝐶𝑜𝑢𝑡 = 𝐴 𝐵𝐶 + 𝐴𝐵 𝐶 + 𝐴𝐵𝐶 + 𝐴𝐵𝐶 

𝐶𝑜𝑢𝑡 = (𝐴 𝐵 + 𝐴𝐵 )𝐶 + 𝐴𝐵(𝐶 + 𝐶) 

𝐶𝑜𝑢𝑡 = (𝐴⨁𝐵)𝐶 + 𝐴𝐵 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

Figure 4.2: Full Adder Circuit 

Figure 4.2a: Full Adder Circuit 



 

73 
 

4.3 Half Subtractor 

Half subtractor is a combinational circuit which performs subtraction of single bit 

binary numbers. The subtraction combinations of two single bit binary numbers can be,  

 

 

 

 

 

The circuit of logical half subtractor is 

 

 

 

 

 

 

 

The truth table with all differences (D) and borrow (b)  is 

 

Table 4.3: Truth Table for Half Subtractor 

 

 

 

 

 

 

 

 Hence, from truth table it is found that, The logical expression using logic gates can be 

represented as.  

𝐷 = 𝐴⨁𝐵  𝑎𝑛𝑑  𝑏 =  𝐴 𝐵 

 

 

 

0 –  0 =  0 

0 –  1  =  1 𝑤𝑖𝑡ℎ 𝑏𝑜𝑟𝑟𝑜𝑤 1 

1 –  0 =  1 

1 –  1 =  0 

Minuend 
(A) 

Subtrahend 
(B) 

Difference 
(D) 

Borrow 
(b) 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 

Figure 4.3: Half Subtractor Circuit 



 

74 
 

 

4.4 Full Subtractor 

This is not practical to perform subtraction only between two single bit binary 

numbers. Instead binary numbers are always multi-bits. The subtraction of two binary 

numbers is performed bit by bit from right (LSB) to left (MSB). During subtraction of same 

significant bit of minuend and subtrahend, there may be one borrow bit along with 

difference bit. This borrow bit (either 0 or 1) is to be added to the next higher significant bit 

of minuend and then next corresponding bit of subtrahend to be subtracted from this. It will 

continue up to MSB. The combinational logic circuit performs this operation is called full 

subtractor. Hence, full subtractor is similar to half subtractor but inputs in full subtractor are 

three instead of two. 

 

Two inputs are for the minuend and subtrahend bits and third input is for borrowed which 

comes from previous bits subtraction. The outputs of full adder are similar to that of half 

adder, these are difference (D) and borrow (b). The combination of minuend bit (A), 

subtrahend bit (B) and input borrow (bi) and their respective differences (D) and output 

borrows (b) are represented as a truth tablein table 4.4 

 

Table 4.4: Truth Table of Full Subtractor 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minuend 
(A) 

Subtrahend 
(B) 

Input 
borrow 

(bi) 

Difference 
(D) 

Borrow 
(b) 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 



 

75 
 

 

Then draw K-map for Difference and borrow. And from K-map the logical expression and 

logical circuit are obtained. 

 

 

 

 

 

 

 

𝐷 = 𝐴𝐵 𝑏𝑖 + 𝐴 𝐵 𝑏𝑖 + 𝐴𝐵𝑏𝑖 + 𝐴 𝐵𝑏𝑖  

 

 

 
 
 
 
 
 

𝑏 =  𝐴 𝐵 𝑏𝑖 + 𝐴 𝐵𝑏𝑖 + 𝐴 𝐵𝑏𝑖 + 𝐴𝐵𝑏𝑖 

 

𝐷 = 𝐴𝐵 𝑏𝑖 + 𝐴𝐵𝑏𝑖 + 𝐴 𝐵𝑏𝑖  

𝐷 = 𝑏𝑖  𝐴𝐵 + 𝐴 𝐵 + 𝑏𝑖 𝐴 𝐵 + 𝐴𝐵  

𝐷 = 𝑏𝑖  𝐴𝐵 + 𝐴 𝐵 + 𝑏𝑖 𝐴𝐵 + 𝐴 𝐵              

𝐷 = 𝑏𝑖⨁𝐴⨁𝐵 

𝐷 = 𝐴⨁𝐵⨁𝑏𝑖 

 

𝑏 =  𝐴 𝐵 𝑏𝑖 + 𝐴 𝐵𝑏𝑖 + 𝐴 𝐵𝑏𝑖 + 𝐴𝐵𝑏𝑖 

𝑏 = 𝐴 𝐵 𝑏𝑖 + 𝑏𝑖  +  𝐴𝐵 + 𝐴 𝐵  𝑏𝑖 

𝑏 =  𝐴 𝐵 + (𝐴⨂𝐵       )𝑏𝑖 

 

 

The circuit of logical full subtractor is 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Full Subtractor Circuit 



 

76 
 

4.5 Binary Parallel Adder 

 A full binary adder performs addition of any single bit of one binary 

number, same significant or same position bit of another binary numbers and carry comes 

from result of addition of previous right side bits of both binary numbers. But a single full 

adder cannot add more than one bits binary number instantly. This can be done only by 

connecting as many full adders as the number of bits of the binary numbers whose addition 

is to be performed. This parallel combination of full adders which performs addition of 

specific bits binary numbers is called binary parallel adder. For adding two 4 bit binary 

numbers we have to connect 4 full adders to make 4 bit parallel adder. The inter connection 

of 4 full adder in 4bit parallel adder is shown in figure 4.5. 

 

 

 

Let us study the explanation of the above circuit by taking an example of addition of two 4 

bit binary numbers. Let us add 1011 with 1101.  

 

 

 

𝐻𝑒𝑟𝑒, 𝐴1 = 1,    𝐴2 = 1,    𝐴3 = 0,     𝐴4 = 1  

𝐵1 = 1,    𝐵2 = 0,    𝐵3 = 1,     𝐵4 = 1   As there is no previous carry C0=0. 

𝑁𝑜𝑤,   𝐶0 + 𝐴1 + 𝐵1 = 0 + 1 + 1 = 10 → 𝑆1 = 0,   𝐶1 = 1  

𝐶1 + 𝐴2 + 𝐵2 = 1 + 1 + 0 = 10 → 𝑆2 = 0,   𝐶2 = 1 

𝐶2 + 𝐴3 + 𝐵3 = 1 + 0 + 1 = 10 → 𝑆3 = 0,   𝐶3 = 1 

𝐶3 + 𝐴4 + 𝐵4 = 1 + 1 + 1 = 10 → 𝑆4 = 1,   𝐶4 = 1 

Therefore, final result of the addition would be  𝐶4𝑆4𝑆3𝑆2𝑆1 = 1100  The 1 bit, 2 bits and 4 

bits parallel adder ICs are available in market.  

𝐴4 𝐵4 𝐴3 𝐵3 𝐴2 𝐵2 𝐴1 𝐵1 

𝑆4 𝑆3 𝑆2 𝑆1 

𝐶0 

𝐶4 

𝐶1 𝐶2 𝐶3 Full adder 
4 

 

Full adder 
1 

 

Full adder 
2 

 

Full adder 
3 

 

Figure 4.5: Binary parallel Adder 

Circuit 



 

77 
 

 

4.6 Binary Subtractor 

To study about binary subtractor, first discuss the method of subtracting two  

multi-bit binary numbers.  

 

 

 

For above subtraction the following general rules are used,  

 

 

 

 

 

and borrow 1 which to be added to next higher significant bit of first binary number. Then 

same positioned bit of second binary number would be subtracted from that. But there are 

other methods by which two binary numbers can be subtracted confidently. One of these is 

2’s complement method of subtraction. Here, first binary number (from which another 

binary number to be subtracted) is kept as it is. Then each bit of second binary numbers 

(which to be subtracted) is complemented. Then 1 is added to LSB of complemented second 

binary number. This results 2’s complement of second binary number. Now finally we add 

first binary number with 2’s complement of the second binary number and we get final 

result of subtraction 

In the previous example, First binary number was 110011 and second binary number was 

100101. Complement or 1's complement of 100101 is 011010. Now by adding 1 with LSB of 

this 1's complement number we get,  

  

 

 

Now by adding first number, 110011 and 2's complement of second number i.e. 11011. We 

get, 1001110 .Hence, 4 bit binary subtractor can be drawn like figure 4.6 

0 – 0 = 0 

0 – 1 = 1 with borrow 1 

1 – 0 = 1 

1 – 1 = 0 

- 110011 

100101 

001110 



 

78 
 

 

 

 

 

 

 

 

 

 

 

Here, A4, A3, A2, A1 is minuend and B4, B3, B2, B1 is subtrahend. S4, S3, S2, S1 is result of 

subtraction where C4 is final carry which is ignored. 

  

4.7 Binary Adder Subtractor 

We have already designed 4 bits binary parallel adder and 4 bit binary subtractor. We have 

also seen that both circuits are more or less same except in subtractor the subtrahend bit 

inputs are inverted with input borrow bit at LSB is 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Binary Subtractor Circuit 

Figure 4.7: Four bit Full adder 

Figure 4.8: Four bit Full Subtractor 



 

79 
 

In the above 4 bit full adder circuit, third input to LSB Adder (FA1) is 1. In addition to that, in 

full subtractor subtrahend bits, i.e. B1, B2, B3 and B4 are inverted. We can combine these two 

circuits (Adder and Subtractor) in one circuit by controlling B1, B2, B3 and B4 terminals and 

third input of LSB adder unit (FAI). We know that, So, we can use XOR gate at each input B1, 

B2, B3 and B4 with control input M (either 1 or 0). Now, if M = 1, B1, B2, B3 and B4 will be 

complemented. At the same time if third input of FA1 is 1, the circuit becomes subtractor. 

So, M = 1 is also to be fed to the third input of FA1 in subtractor.  

 

1⨁𝐵 = 1.𝐵 + 0.𝐵 = 𝐵  

0⨁𝐵 = 0.𝐵 + 1.𝐵 = 𝐵 

 

 

 

 

 

 

 

 

 

 

4.8 BCD Addition  

Like other number system in BCD arithmetical operation may be required. BCD is a 

numerical code which has several rules for addition. The rules are given below in three steps 

with an example to make the idea of BCD Addition clear.  

At first the given number are to be added using the rules of binary. For example,  

 

 

 

 

 

Figure 4.9: Four bit Full adder and Subtractor 



 

80 
 

In second step we have to judge the result of addition. Here two cases are shown to 

describe the rules of BCD Addition. In case 1 the result of addition of two binary number is 

greater than 9, which is not valid for BCD number. But the result of addition in case 2 is less 

than 9, which is valid for BCD numbers. 

If the four bit result of addition is greater than 9 and if a carry bit is present in the result 

then it is invalid and we have to add 6 whose binary equivalent is (0110)2 to the result of 

addition. Then the resultant that we would get will be a valid binary coded number. In case 

1 the result was (1111)2, which is greater than 9 so we have to add 6 or (0110)2 to 

it. 1111 2 +  0110 2 = 0001 0101 = 15 

As you can see the result is valid in BCD. But in case 2 the result was already valid BCD, so 

there is no need to add 6. This is how BCD Addition could be. Now a question may arrive 

that why 6 is being added to the addition result in case BCD Addition instead of any other 

numbers. It is done to skip the six invalid states of binary coded decimal i.e from 10 to 15 

and again return to the BCD codes. Now the idea of BCD Addition can be cleared from two 

more examples. 

Example:1 

Let, 0101 is added with 0110.  

 

 

 

 

To verify it  

We have  (0101)2      →   (5)10&     (0110)2    →   (6)10 

                                    The sum is              (5)10 + (6)10     =  (11)10 

 Example:2 

Now let 0001 0001 is added to 0010 0110.  

 

 

 

 0001 0001 𝐵𝐶𝐷  →  11 10 ,    0010 0110 𝐵𝐶𝐷  →  26 10  

The sum is  11 10 +  26 10 =   37 10 

 0011 0111 𝐵𝐶𝐷  →   37 10  



 

81 
 

So no need to add 6 as because both (0011)2 = (3)10 and (0111)2 = (7)10 are less than (9)10. 

This is the process of BCD Addition. 

 

4.9 Encoder 

When we insert any character or symbol to a digital system, through key board, it is needed 

to be encoded in machine readable farm. Digital systems like computer etc, cannot read the 

characters or symbol directly. The system reads and computes any characters, numbers and 

symbols in their digital form. An encoder does the job that means, it converts different 

human readable characters or symbol to their equivalent digital format. An encoder is 

basically multi inputs and multi outputs digital logic circuit, which has as many inputs as the 

number of character to be encoded and as many outputs as the number of bits in encoded 

form of characters. Suppose we have to design an encoder which will encode 10 characters 

(from 0 to 9). The encoded form of each character would be 4 bit binary equivalent. Then 

the encoder will have 10 numbers of input lines and each for one character. There will be 

four output lines to represent 4 bit encoded form of each input character.  

 

 

 

 

 

 

 

 

 

 

 

 

Similarly for encoding M numbers of characters in N bit format, we need M input N output 

Decimal to Binary Encoder. 

In encoder normally, the input of which encoding to be done, is made high, other all inputs 

remain low at that time. That means a digital encoder works on active high input. To 

understand about a digital encoder let us design the above decimal to binary encodes. The  

Figure 4.10: Encoder Block Diagram 



 

82 
 

Truth table for 10 inputs 4 output encoder would be 

 

Table 4.5: Truth Table for Decimal to Binary Encoder 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the truth table it is found, that output A would be high at 

𝐷8  ,  𝐷9 

so it can be written  as 𝐴 =  𝐷8 + 𝐷9 

Similarly,  𝐵 =  𝐷4 + 𝐷5 + 𝐷6 + 𝐷7 

𝐶 =  𝐷2 + 𝐷3 + 𝐷6 + 𝐷7 + 𝐷9 

𝐷 =  𝐷1 + 𝐷3 + 𝐷5 + 𝐷7 + 𝐷9 

From the above equations the logic circuit drawn as follows. This circuit can also be 

considered as decimal to BCD encoder 

 

 

 

 

 

Inputs Decimal     Binary 

𝐷0 0 0 0 0 0 

𝐷1 1 0 0 0 1 

𝐷2 2 0 0 1 0 

𝐷3 3 0 0 1 1 

𝐷4 4 0 1 0 0 

𝐷5 5 0 1 0 1 

𝐷6 6 0 1 1 0 

𝐷7 7 0 1 1 1 

𝐷8 8 1 0 0 0 

𝐷9 9 1 0 1 1 



 

83 
 

 

 

 

4.9.1 Octal to Binary Encoder 

The octal numbers system has base of 8. Hence the number of digits used in octal system is 

8 and the octal digits are 0 to 7. Hence, there will be eight input line in a basic Octal to 

binary encoder. As binary equivalent of numbers 0 to 7 can be represented by only three 

binary bits, there will be three output lines to represent bits of binary equivalent of octal 

number. The truth table in table 4.6, logical relations between inputs and outputs and the 

corresponding logic circuit figure 4.12 are shown as follows, 

 

Table 4.6: Truth Table for Octal to Binary 

 

 

 

 

 

 

 

Inputs Octal     Binary 

𝐷0 0 0 0 0 

𝐷1 1 0 0 1 

𝐷2 2 0 1 0 

𝐷3 3 0 1 1 

𝐷4 4 1 0 0 

𝐷5 5 1 0 1 

𝐷6 6 1 1 0 

𝐷7 7 1 1 1 

Figure 4.11: Decimal to BCD Encoder Circuit 



 

84 
 

 

𝐴 = 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7 

𝐵 = 𝐷2 + 𝐷3 + 𝐷6 + 𝐷7 

𝐶 = 𝐷1 + 𝐷3 + 𝐷5 + 𝐷7 

 

 

 

 

 

 

 

 

 

 

 

 

4.10 Binary Decoder 

Decoder is a combinational circuit with 𝑛 input lines and 2𝑛 output lines. In functionality, a 

binary decoder converts a definite sequence of input bits into a specific pattern as decided 

by the user based on the requirement. Figure4.13 shows a binary decoder with one enable 

pin and 3 input lines which further results in 8 lines at its output. 

 

 

 

 

Figure 4.12: Octal to BCD Encoder Circuit 

Figure 4.13: Decoder Block Diagram 

D6 D7 D4 D5 D2 D3 D1 D0 

A 

B 

C 



 

85 
 

The output sequence of a decoder for a particular input pattern is realized using its truth 

table. Table 4.7 shows the truth table for the decoder of Figure 4.13 which shows that when 

the enable is low, all the output lines are low, no matter what the input sequence be. This 

indicates the OFF state of the decoder which can also be considered to be its reset state. 

Thus one has to drive high on the enable pin to realize the functionality of the decoder. 

Table 4.7: Truth table for 3 to 8 decoder 

Enable Pin  Input Lines Output Lines 

E I2 I1 I0 O7 O6 O5 O4 O3 O2 O1 O0 

0 X X X 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 0 0 1 0 
1 0 1 0 0 0 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 0 0 0 
1 1 0 0 0 0 0 1 0 0 0 0 
1 1 0 1 0 0 1 0 0 0 0 0 
1 1 1 0 0 1 0 0 0 0 0 0 
1 1 1 1 1 0 0 0 0 0 0 0 

X denotes don’t care condition 

 

Table 4.7 shows that for the input sequence𝐼2𝐼1𝐼0  =  000, the output pin O0 of the decoder 

is high while all other bits (O7 down to O1) remain low. Likewise, for the input sequence of 

001, only O1 is high. Similar observation shows that only one output line is high for any given 

input bit pattern i.e. O2 is high for 010, O3 is high for 011, O4 is high for 100, O5 is high for 

101, O6 is high for 110 and O7 is high for 111. Thus the Boolean equations for the outputs of 

the 3 to 8 decodershown in Figure 4.13 are given by 

 

𝑂0 = 𝐸 𝐼  2𝐼  1𝐼  0                                                               (1) 

𝑂1 = 𝐸 𝐼  2𝐼  1𝐼0                                                               (2) 

𝑂2 = 𝐸 𝐼  2𝐼1𝐼  0                                                               (3) 

𝑂3 = 𝐸 𝐼  2𝐼1𝐼0                                                               (4) 

𝑂4 = 𝐸 𝐼2𝐼  1𝐼  0                                                               (5) 

𝑂5 = 𝐸 𝐼2𝐼  1𝐼0                                                               (6) 

𝑂6 = 𝐸 𝐼2𝐼1𝐼  0                                                               (7) 

𝑂7 = 𝐸 𝐼2𝐼1𝐼0                                                               (8) 

 



 

86 
 

Equations (1) to (8) show that the decoder of Figure 4.13 can be designed using AND gate 

and NOT gate as shown by Figure 4.14. This is due to the fact that the output lines are 

nothing but the logical 'and' of either input or its negation with the enablesignal. The 

analogy presented here for 3 to 8 decoder holds good for any 𝑛 to 2𝑛 decoder. However the 

output bit pattern need not be the same as the one explained. These kinds of decoders are 

used in the applications such as data multiplexing, seven segment display and so on. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.11 Mutliplexer: 

A multiplexer is a circuit that accepts many input but give only one output. A de-multiplexer 

function exactly in the reverse of  a multiplexer, that is a de-multiplexer accepts only one 

input and gives many outputs. Generally multiplexer and de-multiplexer are used together, 

because of the communication systems are bi directional. 

Multiplexer means many into one. A multiplexer is a circuit used to select and route any one 

of the several input signals to a signal output. An simple example of an non electronic circuit 

of a multiplexer is a single pole multi-position switch.Multi-position switches are widely 

O0 

O1 

O2 

O3 

O4 

O5 

O6 

O7 

E I2 I1 I0 

Figure 4.14: Binary Decoder Circuit using Basic Gates 



 

87 
 

used in many electronics circuits. However circuits that operate at high speed require the 

multiplexer to be automatically selected. A mechanical switch cannot perform this task 

satisfactorily. Therefore, multiplexer used to perform high speed switching are constructed 

of electronic components. 

Multiplexer handle two type of data that is analog and digital. For analog application, 

multiplexer are built of relays and transistor switches. For digital application, they are built 

from standard logic gates. 

The multiplexer used for digital applications, also called digital multiplexer, is a circuit with 

many input but only one output. By applying control signals, we can steer any input to the 

output. Few types of multiplexer are 2-to-1, 4-to-1, 8-to-1, 16-to-1 multiplexer. 

Following figure shows the general idea of a multiplexer with 𝑛 input signal, 𝑚 control 

signals and one output signal. 

 

 

 

 

 

 

 

 

 

 

 

4.11.1 Understanding 4-to-1 Multiplexer: 

The 4-to-1 multiplexer has 4 input bit, 2 control bits, and 1 output bit. The four input bits are 

D0,D1,D2 and D3 only one of this is transmitted to the output y. The output depends on the 

value of AB which is the control inputs. The control input determines which of the input 

data bit is transmitted to the output. 

For instance, as shown in fig. when AB = 00, the upper AND gate is enabled while all other 

AND gates are disabled. Therefore, data bit D0 is transmitted to the output, giving  

𝑌 =  𝐷𝑜 . 

MUX 
0utput Signal 

M Control 
     Lines 

  N  

Input 

Signal 

Figure 4.15: Multiplexer Pin Diagram 



 

88 
 

 

 

 

 

 

 

 

 

 

 

 

 

If the control input is changed to AB =11, all gates are disabled except the bottom AND gate. 

In this case, D3 is transmitted to the output and 𝑌 =  𝐷3. 

An example of 4-to-1 multiplexer is IC 74153 in which the output is same as the input. 

Another example of 4-to-1 multiplexer is 45352 in which the output is the compliment of 

the input. 

Example of 16-to-1 line multiplexer is IC74150. 

 

4.11.2Applications of Multiplexer: 

Multiplexer are used in various fields where multiple data need to be transmitted using a 

single line. Following are some of the applications of multiplexers – 

Communication system – Communication system is a set of system that enable 

communication like transmission system, relay and tributary station, and communication 

network. The efficiency of communication system can be increased considerably using 

multiplexer. Multiplexer allow the process of transmitting different type of data such as 

audio, video at the same time using a single transmission line. 

Telephone network – In telephone network, multiple audio signals are integrated on a single 

line for transmission with the help of multiplexers. In this way, multiple audio signals can be 

isolated and eventually, the desire audio signals reach the intended recipients. 

Figure 4.16: Multiplexer Circuit Diagram 



 

89 
 

Computer memory – Multiplexers are used to implement huge amount of memory into the 

computer, at the same time reduces the number of copper lines required to connect the 

memory to other parts of the computer circuit. 

Transmission from the computer system of a satellite  – Multiplexer can be used for the 

transmission of data signals from the computer system of a satellite or spacecraft to the 

ground system using the GPS (Global Positioning System) satellites. 

 

4.12 Demultiplexer: 

Demultiplexer means one to many. A demultiplexer is a circuit with one input and many 

output. By applying control signal, we can steer any input to the output. Few types of 

demultiplexer are 1-to 2, 1-to-4, 1-to-8 and 1-to 16 demultiplexer. 

Figure 4.17 illustrates the general idea of a demultiplexer with 1 input signal, m control 

signals, and n output signals. 

 

 

 

 

 

 

 

 

 

 

 

4.12.1 Understanding 1- to-4  Demultiplexer: 

The 1-to-4 demultiplexer has 1 input bit, 2 control bit, and 4 output bits. An example of 1-to-

4 demultiplexer is IC 74155. The 1-to-4 demultiplexer is shown in figure below- 

 

 

 

 

M  

0utput 

Signal 

 

DE MUX 

M Control 
     Lines 

1  
Input 
Signal 

Figure 4.17: DeMultiplexer Pin Diagram 



 

90 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The input bit is labeled as Data D. This data bit is transmitted to the data bit of the output 

lines. This depends on the value of AB, the control input. 

When AB = 01, the upper second AND gate is enabled while other AND gates are disabled. 

Therefore, only data bit D is transmitted to the output, giving Y1 = Data. 

If D is low, Y1 is low. IF D is high,Y1 is high. The value of Y1 depends upon the value of D. All 

other outputs are in low state. 

If the control input is changed to AB = 10, all the gates are disabled except the third AND 

gate from the top. Then, D is transmitted only to the Y2 output, and Y2 = Data. 

Example of 1-to-16 demultiplexer is IC 74154 it has 1 input bit, 4 control bits and 16 output 

bit. 

Figure 4.18: DeMultiplexerCircuit Diagram 



 

91 
 

 

 

4.12.2Applications of Demultiplexer: 

Demultiplexer  is used to connect a single source to multiple destinations. The main 

application area of demultiplexer is communication system where multiplexer are used. 

Most of the communication system are bidirectional  i.e. they function in both ways 

(transmitting and receiving signals). Hence, for most of the applications, the multiplexer and 

demultiplexer work in sync. Demultiplexer are also used for reconstruction  of parallel data 

and ALU circuits. 

Communication System – Communication system use multiplexer to carry multiple data like 

audio, video and other form of data using a single line for transmission. This process makes 

the transmission easier.  The demultiplexer receives the output signals of the multiplexer 

and converts them back to the original form of the data at the receiving end. The 

multiplexer and demultiplexer work together to carry out the process of transmission and 

reception of data in communication system. 

ALU (Arithmetic Logic Unit) – In an ALU circuit, the output of ALU can be stored in multiple 

registers or storage units with the help of demultiplexer. The output of ALU is fed as the 

data input to the demultiplexer. Each output of demultiplexer is connected to multiple 

register which can be stored in the registers. 

Serial to parallel converter – A serial to parallel converter is used for reconstructing parallel 

data from incoming serial data stream.  In this technique, serial data from the incoming 

serial data stream is given as data input to the demultiplexer at the regular intervals. A 

counter is attach to the control input of the demultiplexer. This counter directs the data 

signal to the output of the demultiplexer where these data signals are stored. When all data 

signals have been stored, the output of the demultiplexer can be retrieved and read out in 

parallel. 

 

 

 

  

 

 



 

92 
 

Unit V Flip Flop 

R S , J K, D, T flip flops – master slave flip flop- IC 555 timer – astable- multi-vibrator – mono 

stable multivibrator. 

5.1 Flip Flop 

A digital computer needs devices which can store information. A flip flop is a binary storage 

device. It can store binary bit either 0 or 1. It has two stable states HIGH and LOW i.e. 1 and 

0. It has the property to remain in one state indefinitely until it is directed by an input signal 

to switch over to the other state. It is also called bistablemultivibrator.  

The basic formation of flip flop is to store data. They can be used to keep a record or what 

value of variable (input, output or intermediate). Flip flop are also used to exercise control 

over the functionality of a digital circuit i.e. change the operation of a circuit depending on 

the state of one or more flip flops. These devices are mainly used in situations which require 

one or more of these three. Operations; storage and sequencing. 

5.2 Latch R S Flip Flop  

The RS (Reset Set) flip flop is the simplest flip flop of all and easiest to understand. It is 

basically a device which has two outputs one output being the inverse or complement of the 

other, and two inputs. A pulse on one of the inputs takes on to a particular logic state. The 

outputs will then remain in this state until a similar pulse is applied to the other input. The 

two inputs are called the Set and Reset input (sometimes called the preset and clear inputs). 

Such flip flop can be made simply by cross coupling two inverting gates either NAND or NOR 

gate could be used Figure 5.1(a) shows on RS flip flop using NAND gate and Figure 5.1(b) 

shows the same circuit using NOR gate. 

 

 

 

 

Figure 5.1: Latch RS Flip Flop Using NAND and NOR Gates 

 

5.1(a) 5.1(b) 



 

93 
 

To describe the circuit of Figure 5.1(a), assume that initially both R and S are at the logic 1 

state and that output is at the logic 0 state. 

 Now, if 𝑄 =  0and 𝑅 =  1, then these are the states of inputs of gate B, therefore the 

outputs of gate B is at 1 (making it the inverse of Q i.e. 0). The output of gate B is connected 

to an input of gate A so if S = 1, both inputs of gate A are at the logic 1 state. This means that 

the output of gate A must be 0 (as was originally specified). In other words, the 0 state at Q 

is continuously disabling gate B so that any change in R has no effect. Also the 1 state at𝑄 is 

continuously enabling gate A so that any change S will be transmitted to Q. The above 

conditions constitute one of the stable states of the device referred to as the Reset state 

since 𝑄 =  0. 

 Now suppose that the RS flip flop in the Reset state, the S input goes to 0. The output of 

gate A i.e. Q will go to 1 and with Q = 1 and R = 1, the output of gates 𝐵(𝑄 ) will go to 0 with 

 𝑄  now 0 gate A is disabled keeping Q at 1. Consequently, when S returns to the 1 state it 

has no effect on the flip flop whereas a change in R will cause a change in the output of gate 

B. The above conditions constitute the other stable state of the device, called the Set state 

since 𝑄 =  1. Note that the change of the state of S from 1 to 0 has caused the flip flop to 

change from the Reset state to the Set state.  

There is another input condition which has not yet been considered. That is when both the 

R and S inputs are taken to the logic state 0. When this happens both Q and 𝑄 will be forced 

to 1 and will remain so far as long as R and S are kept at 0. However when both inputs 

return to 1 there is no way of knowing whether the flip flop will latch in the Reset state or 

the Set state. The condition is said to be indeterminate because of this indeterminate state 

great care must be taken when using RS flip flop to ensure that both inputs are not 

instructed simultaneously 

 

 

 

 

 

 



 

94 
 

Table 5.1: The Truth Table for the NAND RS flip flop 

Initial Conditions Inputs(pulsed) Final Output 

𝑸 𝑺 𝑹 𝑸 𝑸  

1 0 0 indeterminate  

1 0 1 1 0 

1 1 0 0 1 

1 1 1 1 0 

0 0 0 indeterminate  

0 0 1 1 0 

0 1 0 0 1 

0 1 1 0 1 

 

or more simply shown in Table 5.2 

Table 5.2: Simple NAND RS Flip Flop Truth Table 

𝑺 𝑹 𝑸 

0 0 indeterminate 

0 1 Set (1) 

1 0 Reset(0) 

1 1 No change 

 

When NOR gate are used the R and S inputs are transposed compared with the NAND 

version. Also the stable state when R and S are both 0. A change of state is effected by 

pulsing the appropriate input to the 1 state. The indeterminate state is now when both R 

and S are simultaneously at logic 1. Table 5.3 shows this operation. 

Table 5.3: NOR Gate RS Flip Flop Truth Table 

 

 

 

 

 

 

𝑺 𝑹 𝑸 

0 0 No change 

0 1 Reset(0) 

1 0 Set (1) 

1 1 indeterminate 



 

95 
 

5.3 Clocked RS Flip Flop 

 The RS latch flip flop required the direct input but no clock. It is very useful to add 

clock to control precisely the time at which the flip flop changes the state of its output.  

In the clocked RS flip flop the appropriate levels applied to their inputs are blocked till the 

receipt of a pulse from another source called clock. The flip flop changes state only when 

clock pulse is applied depending upon the inputs. The basic circuit is shown in Figure 5.2. 

This circuit is formed by adding two NAND gates at inputs to the RS flip flop. In addition to 

control inputs Set (S) and Reset (R), there is a clock input (C) also. 

 

 

 

 

 

 

Figure 5.2: Clocked RS Flip Flop 

Table 5.4: The Truth Table for the Clocked R-S Flip Flop 

Initial Conditions Inputs(pulsed) Final output 

𝑸 𝑺 𝑹 𝑸 (𝒕 + 𝟏) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 indeterminate 

1 0 0 1 

1 0 1 0 

1 1 0 0 

1 1 1 indeterminate 

 

 

 

 



 

96 
 

The excitation table 5.5 for RS flip flop is very simply derived as given below 

Table 5.5: Excitation Table for RS Flip Flop 

 

 

 

 

 

5.4 D Flip Flop  

A D type (Data or delay flip flop) has a single data input in addition to the clock input as 

shown in Figure 5.3. 

 

 

 

 

 

Figure 5.3: D Flip Flop 

Basically, such type of flip flop is a modification of clocked RS flip flop gates from a basic 

Latch flip flop and NOR gates modify it in to a clock RS flip flop. The D input goes directly to S 

input and its complement through NOT gate, is applied to the R input. 

 This kind of flip flop prevents the value of D from reaching the output until a clock pulse 

occurs. The action of circuit is straight forward as follows.  

When the clock is low, both NAND gates are disabled;therefore D can change values without 

affecting the value of𝑄. On the other hand, when the clock is high, both NAND gates are 

enabled. In this case, 𝑄 is forced equal to D when the clock again goes low, 𝑄 retains or 

stores the last value of D. The truth table for such a flip flop is as given below in table 5.6. 

 

 

𝑺 𝑹 𝑸 

0 0 No change 

0 1 Reset(0) 

1 0 Set (1) 

1 1 indeterminate 



 

97 
 

Table 5.6: Truth Table for D Flip Flop 

 

 

 

 

 

The excitation table 5.7 for D flip flop is very simply derived given as under.  

Table 5.7: Excitation Table for D Flip Flop 

 

 

 

5.5 JK Flip Flop  

One of the most useful and versatile flip flop is the JK flip flop the unique features of a JK flip 

flop are:  

1. If the J and K input are both at 1 and the clock pulse is applied, then the output will 

change state, regardless of its previous condition.  

2. If both J and K inputs are at 0 and the clock pulse is applied there will be no change in the 

output. There is no indeterminate condition, in the operation of JK flip flop i.e. it has no 

ambiguous state. The circuit diagram for a JK flip flop is shown in Figure 5.4. 

 

 

 

 

 

Figure 5.4: JK Flip Flop 

 

𝑺 𝑹 𝑸 (𝒕 + 𝟏) 

0 0 0 

0 1 1 

1 0 0 

1 1 1 

𝑺 𝑸 

0 0 

0 1 



 

98 
 

𝑊ℎ𝑒𝑛 𝐽 =  0 𝑎𝑛𝑑 𝐾 =  0 

These J and K inputs disable the NAND gates, therefore clock pulse have no effect on the flip 

flop. In other words, 𝑄 returns it last value.  

𝑊ℎ𝑒𝑛 𝐽 =  0 𝑎𝑛𝑑 𝐾 =  1, 

The upper NAND gate is disabled the lower NAND gate is enabled if 𝑄 is 1 therefore, flip flop 

will be reset (𝑄 =  0 , 𝑄 = 1)if not already in that state.  

𝑊ℎ𝑒𝑛 𝐽 =  1 𝑎𝑛𝑑 𝐾 =  0  

The lower NAND gate is disabled and the upper NAND gate is enabled if 𝑄 is at 1, As a result 

we will be able to set the flip flop ( 𝑄 =  1, 𝑄 = 0) if not already set  

𝑊ℎ𝑒𝑛 𝐽 =  1 𝑎𝑛𝑑 𝐾 =  1  

If 𝑄 = 0 the lower NAND gate is disabled the upper NAND gate is enabled. This will set the 

flip flop and hence 𝑄 will be 1. On the other hand if 𝑄 = 1, the lower NAND gate is enabled 

and flip flop will be reset and hence 𝑄 will be 0. In other words , when J and K are both high, 

the clock pulses cause the JK flip flop to toggle. Truth table 5.8 for JK flip flop is shown  

 

Table 5.8: The truth table for the JK flip flop 

Initial Conditions Inputs(pulsed) Final Output 

𝑸 𝑺 𝑹 𝑸(𝒕 + 𝟏) 

0 0 0 0 

0 0 1 0 

0 1 0 1 

0 1 1 1 

1 0 0 1 

1 0 1 0 

1 1 0 1 

1 1 1 0 

 

 

 

 

 



 

99 
 

The excitation table 5.9 for JK flip flop is very simply derived as given in table  

Table 5.9: Excitation table for JK Flip Flop 

 

 

 

 

 

5.6 T Flip Flop 

 A method of avoiding the indeterminate state found in the working of RS flip flop is to 

provide only one input (the T input) such, flip flop acts as a toggle switch. Toggle means to 

change in the previous stage i.e. switch to opposite state. It can be constructed from clocked 

RS flip flop be incorporating feedback from output to input as shown in Figure 5.5. 

 

 

 

 

 

Figure 5.5: T Flip Flop 

Such a flip flop is also called toggle flip flop. In such a flip flop a train of extremely narrow 

triggers drive the T input.Each time one of these triggers arrives, the output of the flip flop 

changes the stage. For instance 𝑄 equals 0 just before the trigger. Then the upper AND gate 

is enable and the lower AND gate is disabled. When the trigger arrives, it results in a high S 

input. This sets the 𝑄 output to 1. When the next trigger appears at the point T, the lower 

AND gate is enabled and the trigger passes through to the R input this forces the flip flop to 

reset.  

Since each incoming trigger is alternately changed into the set and reset inputs the flip flop 

toggles. It takes two triggers to produce one cycle of the output waveform. This means the 

𝑺 𝑹 𝑸 

0 0 No change 

0 1 0 

1 0 0 

1 1 Toggle 



 

100 
 

output has half the frequency of the input stated another way, a T flip flop divides the input 

frequency by two. Thus such a circuit is also called a divide by two circuit.  

A disadvantage of the toggle flip flop is that the state of the flip flop after a trigger pulse has 

been applied is only known if the previous state is known. The truth table for a T flip flop is 

as given table 5.10.  

Table 5.10: Truth table for T Flip Flop 

 

 

 

 

 

The excitation table 5.11 for T flip flop is very simply derived as shown. 

Table 5.11: Excitation table for T Flip Flop 

 

 

 

 

Generally T flip flop ICs are not available. It can be constructed using JK, RS or D flip flop. 

Figure 5.6 shows the relation of T flip flop using JK flip flop 

 

Figure 5.6: T Flip Flop using J K Flip Flop 

 

𝑸𝒏 𝑻 𝑸𝒏 + 𝟏 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

𝑻 𝑸 

0 𝑄𝑛  

1 𝑄 𝑛  

T Q 

K 

CLK 

Q 

J 



 

101 
 

 

Figure 5.7: D-type Flip Flop connected as toggle stage 

A D type flip flop may be modified by external connection as a Ttype stage as shown in 

Figure 5.7. Since the Q logic is used as Dinput the opposite of the 𝑄 output is transferred 

into the stage each clock pulse. Thus the stage having 𝑄 =  0transistors𝑄 =  1, providing a 

toggle action, if the stage had 𝑄 =  1 the clock pulse would result in 𝑄 =  0 being 

transferred, again providing the toggle operation. The Dtype flip flop connected as in Figure 

5.7  will thus operate as a Ttype stage, complementing each clock pulse.  

5.7 Master Slave Flip Flop 

 Figure 5.8 shows the schematic diagram of master slave JK flip flop 

 

Figure 5.8: Master Slave JK Flip Flop (Block diagram) 

A master slave flip flop contains two clocked flip flops. The first is called master and the 

second slave. When the clock is high the master is active. The output of the master is set or 

reset according to the state of the input. As the slave is inactive during this period its output 

remains in the previous state. When clock becomes low the output of the slave flip flop 

changes because it becomes active during low clock period. The final output of master slave 

flip flop is the output of the slave flip flop. So the output of master slave flip flop is available 

at the end of a clock pulse. 

 

 

1 

J 

K 

C 

J 

K 

C 

Q 

Q 

J 

C 

K 

Q1 

Q2 

D 

CLK 

Q 

Q 



 

102 
 

 

 

 

 

 

 

 

5.8 555 IC  Timer 

The 555 is the most popular integrated circuit (chip) introduced in 1971 by American 

company Signetics.The 555 timer IC is used in a variety of timer, pulse generation, and 

oscillator applications. The 555 can also be used to provide time delays, as an oscillator, and 

as a flip-flop element. Derivatives provide up to four timing circuits in one package.The 555 

is still in widespread use due to its low price, ease of use, and stability. It is now made in the 

original bipolar and also in low-power CMOS types. The standard 555 package includes 25 

transistors, 2 diodes and 15 resistors on a silicon chip installed in an 8-pin mini dual-in-line 

package 

 

 

 

 

 

 

 

 

The circuit symbol pins are arranged to suit the circuit: for example pin 8 at the top for the 

+Vs supply, pin 3 output on the right. Usually just the pin numbers are used and they are not 

labeled with their function. 

 

 

Figure 5.9: 555 PIN Arrangements Figure 5.10: 555 Circuit Symbol 

Figure 8(a): Master Slave Flip Flop 



 

103 
 

The connection of the pins for a DIP package is as follows: 

 

Pin 1: GND⟹ Ground reference voltage, low level (0 V) 

Pin 2: TRIG⟹ The OUT pin goes high and a timing interval starts when this input falls 

below 1/2 of CTRL voltage (which is typically 1/3VCC, CTRL being 

2/3 VCC by default if CTRL is left open). More simply we can say that 

OUT will be high as long as the trigger is kept at low voltage. Output of 

the timer totally depends upon the amplitude of the external trigger 

voltage applied to this pin 

Pin 3: OUT⟹ This output is driven to approximately 1.7 V below +VCC, or to GND. 

Pin 4: RESET⟹ A timing interval may be reset by driving this input to GND, but the 

timing does not begin again until RESET rises above approximately 0.7 

volts. Overrides TRIG which overrides THR 

Pin 5: CTRL⟹ Provides "control" access to the internal voltage divider (by default, 

2/3 VCC).Pin 5 is also sometimes called the CONTROL VOLTAGE pin. By 

applying a voltage to the CONTROL VOLTAGE input one can alter the 

timing characteristics of the device. In most applications, the CONTROL 

VOLTAGE input is not used. It is usual to connect a 10 nF capacitor 

between pin 5 and 0 V to prevent interference. The CONTROL VOLTAGE 

input can be used to build an astablemultivibrator with a frequency-

modulated output. 

Pin 6: THR⟹ The timing (OUT high) interval ends when the voltage at THR 

("threshold") is greater than that at CTRL (2/3 VCC if CTRL is open). 

Pin 7: DIS⟹ Open collector output which may discharge a capacitor between 

intervals. In phase with output. 

Pin 8: VCC⟹ Positive supply voltage, which is usually between 3 and 15 V depending 

on the variation. 



 

104 
 

The IC 555 has three operating modes: 

Bistable mode or Schmitt trigger – The 555 IC can operate as a flip-flop, if the DIS pin is not 

connected and no capacitor is used. Uses include bounce-free latched switches. 

Monostablemode –In this mode, the 555 IC functions as a "one-shot" pulse generator. 

Applications include timers, missing pulse detection, bounce-free switches, touch switches, 

frequency divider, capacitance measurement, pulse-width modulation (PWM) etc. 

Astable (free-running) mode –The 555 IC can operate as an electronic oscillator. Uses 

include LED and lamp flashers, pulse generation, logic clocks, tone generation, security 

alarms, pulse position modulation etc. The 555 IC can be used as a simple ADC, converting 

an analog value to a pulse length (e.g., selecting a thermistor as timing resistor allows the 

use of the 555 IC in a temperature sensor and the period of the output pulse is determined 

by the temperature). The use of a microprocessor-based circuit can then convert the pulse 

period to temperature, linearize it and even provide calibration means. 

5.9 555 AstableMultivibrator 

The 555 timer IC can be used with a few simple components to build an astable circuit 

which produces a 'square wave'. This is a digital waveform with sharp transitions between 

low (0V) and high (+Vs), the durations of the low and high states may be different. The 

circuit is called an astable because it is not stable in any state: the output is continually 

changing between 'low' and 'high'. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: 555 astable output, a square wave 
(Tm and Ts may be different) 



 

105 
 

 

 

 

 

 

 

 

 

 

 

 

 

Time period and frequency 

The time period (T) of the square wave is the time for one complete cycle, but it is often 

better to consider frequency (f) which is the number of cycles per second. 

𝑇 =  0.7 × (𝑅1 +  2𝑅2) ×  𝐶1 

𝑓 =            
1.4 

(𝑅1 +  2𝑅2)  ×  𝐶1
 

𝑇   = time period in seconds (s)  

𝑓    = frequency in hertz (Hz)  

𝑅1 = resistance in ohms (ohm)  

𝑅2 = resistance in ohms (ohm)  

𝐶1 = capacitance in farads (F) 

Mark and Space times: 

The time period can be split into two parts: 

Time period,𝑇 =  𝑇𝑚 +  𝑇𝑠 

Mark time (output high),𝑇𝑚 =  0.7 × (𝑅1 +  𝑅2)  ×  𝐶1 

Space time (output low),    𝑇𝑠 =  0.7 ×  𝑅2 ×  𝐶1 

It is important to note that 𝑇𝑚 must be greater than 𝑇𝑠 since 𝑅1 cannot be 0 𝑜ℎ𝑚 (the 

minimum is 1 𝐾𝑜ℎ𝑚).Many circuits require𝑇𝑚 𝑎𝑛𝑑 𝑇𝑠 being about equal. This is achieved if 

𝑅2 is much larger than 𝑅1. 

 

 

Figure 5.12: 555 AstableMultivibratorcircuit 



 

106 
 

Choosing 𝑅1,𝑅2 𝑎𝑛𝑑 𝐶1 

𝑅1 𝑎𝑛𝑑 𝑅2should be in the range 1𝑘𝑜ℎ𝑚 𝑡𝑜 1𝑀𝑜ℎ𝑚. It is best to choose 𝐶1 first because 

capacitors are available in just a few values.Choose 𝐶1 to suit the frequency range you 

require (use the table as a guide). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Choose 𝑅2 to give the frequency (f) you require. Assume that R1 is much smaller than R2 (so 

that Tm and Ts are almost equal), then you can use: 

If 𝑅1 <<  𝑅2 use 

𝑅2 =    
0.7  

𝑓 ×  𝐶1
 

 Choose R1 to be about a tenth of 𝑅2 (the minimum is 1kohm) unless you 

want the mark time Tm to be significantly longer than the space time Ts.If you need a 

variable resistor it is best to make it R2. Beware that if R1 is variable it must have a fixed 

resistor of at least 1kohm in series (this is not required for R2) 

Duty cycle 

 The duty cycle of an astable circuit is the proportion of the complete cycle for 

which the output is high (the mark time). It is usually given as a percentage. For a standard 

555 astable circuit the mark time (Tm) must be greater than the space time (Ts), so the duty 

cycle must be at least 50%: 

𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒  =       
𝑇𝑚

 Tm +  Ts
     =   

𝑅1 +  𝑅2 

 R1 +  2R2
 

555 Astable frequencies 

C1 
R2 - 10k 

R1 - 1k 

R2 - 100k 

R1 - 10k 

R2 - 1M 

R1  - 100k 

0.001µF 68kHz 6.8kHz 680Hz 

0.01µF 6.8kHz 680Hz 68Hz 

0.1µF 680Hz 68Hz 6.8Hz 

1µF 68Hz 6.8Hz 0.68Hz 

10µF 6.8Hz 
0.68Hz 

(41 per min.) 

0.068Hz 

(4 per min.) 



 

107 
 

 

 

 

 

  

 

 

 

 

Duty cycle of less than 50% 

 To achieve a duty cycle of less than 50% a signal diode (such as 1N4148) can 

be added in parallel with R2 as shown in the diagram. This bypasses R2 during the charging 

(mark) part of the cycle so that Tm depends only on R1 and C1: 

555 astable with diode (for duty cycle < 50%) 

 Tm = 0.7 × R1 × C1   (ignoring 0.7V across diode) 

Ts  = 0.7 × R2 × C1   (unchanged) 

  T = Tm + Ts = 0.7 × (R1 + R2) × C1 

𝐷𝑢𝑡𝑦 𝑐𝑦𝑐𝑙𝑒 𝑤𝑖𝑡ℎ 𝑑𝑖𝑜𝑑𝑒 =     
 𝑇𝑚

Tm +  Ts
     =      

𝑅1  

R1 +  R2
 

  

 

 

 

 

 

 

 

 

 

 

Figure 5.14: 555 Astablecircuit with diode across R2 Tm can be less than Ts so the 
duty cycle can be less than 50% 

Figure 5.13: Duty Cycle 



 

108 
 

 

AstableMultivibrator Operation 

 

 

 

 

 

 

 

 

 

 

With the output high (+Vs) the capacitor C1 is charged by current flowing through R1 and 

R2. The threshold and trigger inputs monitor the capacitor voltage and when it 

reaches 2/3Vs (threshold voltage) the output becomes low and the discharge pin is 

connected to 0V. 

The capacitor now discharges with current flowing through R2 into the discharge pin. 

When the voltage falls to 1/3Vs (trigger voltage) the output becomes high again and the 

discharge pin is disconnected, allowing the capacitor to start charging again. 

This cycle repeats continuously unless the reset input is connected to 0V which forces the 

output low while reset is 0V. 

An astable can be used to provide the clock signal for circuits such as counters. 

A low frequency astable (< 10Hz) can be used to flash an LED on and off, higher frequency 

flashes are too fast to be seen clearly. Driving a loudspeaker or piezo transducer with a low 

frequency of less than 20Hz will produce a series of 'clicks' (one for each low/high 

transition) and this can be used to make a simple metronome. 

An audio frequency astable (20Hz to 20kHz) can be used to produce a sound from a 

loudspeaker or piezo transducer. The sound is suitable for buzzes and beeps. The natural 

(resonant) frequency of most piezo transducers is about 3 kHz and this will make them 

produce a particularly loud sound. 

 

 

Figure 5.15: 555 AstableMultivibratorOperations 



 

109 
 

 

5.10 555 MonoStableMultivibrator 

The 555 timer IC can be used with a few simple components to build a monostable circuit 

which produces a single output pulse when triggered. It is called a monostable because it is 

stable in just one state: 'output low'. The 'output high' state is temporary. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Monostable Time Period 

The duration of the pulse is called the time period (T) and this is determined by resistor R1 

and capacitor C1:   

𝑇𝑖𝑚𝑒 𝑝𝑒𝑟𝑖𝑜𝑑,𝑇 =  1.1 ×  𝑅1 ×  𝐶1 

T   = time period in seconds (s)  

R1 = resistance in ohms (ohm)  

C1 = capacitance in farads (F)  

The maximum reliable time period is about 10 minutes. 

The constant 1.1 is added because the capacitor charges to 2/3 =  67%so it is a bit longer 

than the time constant (R1 × C1) which is the time taken to charge to 63%. 

 

Figure 5.16: 555 mono stable output, a single pulse 

Figure 5.17: 555 monostablecircuit with manual trigger 



 

110 
 

Choosing R1 and C1 

Choose C1 first because there are relatively few values available. Choose R1 to give the 

required time period. R1 should be in the range 1kohm to 1Mohm, so use a fixed resistor of 

at least 1kohm in series if R1 is variable. The electrolytic capacitors do not have accurate 

values (errors of least 20% are common) and they tend to leak charge which increases the 

time period (especially if you are using a high value resistor). 

MonostableMultivibrator Operation 

 

 

 

 

 

 

 

 

 

 

 

The timing period is triggered (started) when the trigger input (pin 2) is less than 1/3 Vs, 

this makes the output high (+Vs) and the capacitor C1 starts to charge through resistor R1. 

Once the time period has started further trigger pulses are ignored. 

The threshold input (pin 6) monitors the voltage across C1 and when this reaches 2/3 Vs 

the time period is over and the output becomes low. At the same time discharge (pin 7) is 

connected internally to 0V, discharging the capacitor ready for the next trigger. 

The reset input (pin 4) overrides all other inputs and the timing may be cancelled at any 

time by connecting reset to 0V, this instantly makes the output low and discharges the 

capacitor. If the reset function is not required the reset pin should be connected to +Vs 

directly with wire or with a resistor of about 10k . 

Figure 5.18: 555 monostable Operation 



 

111 
 

It may be useful if a monostable circuit is reset or triggered automatically when the power 

supply is connected or switched on. This is achieved by using a capacitor instead of (or in 

addition to) a push switch as shown in the figure. 

 

 

 

 

 

 

 Figure5.19 : For Automatic Trigger 


